Yue, Yisong
Laubscher, Emily and Wang, Xuefei (Julie), et el. (2024) Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning ; Cell Systems; Vol. 15; No. 5; 475-482.e6; 10.1016/j.cels.2024.04.006
Israel, Uriah and Marks, Markus, et el. (2024) A Foundation Model for Cell Segmentation ; bioRvix; 2023.11.17.567630; PMCID PMC10690226; 10.1101/2023.11.17.567630
Yang, Jason and Ducharme, Julie, et el. (2024) Correction to "DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering" ; ACS Synthetic Biology; Vol. 13; No. 2; 692; 10.1021/acssynbio.3c00751
Talukder, Sabera and Yue, Yisong, et el. (2024) TOTEM: TOkenized Time Series EMbeddings for General Time Series Analysis ; 10.48550/arxiv.2402.16412
Dorobantu, Victor D. and Azizzadenesheli, Kamyar, et el. (2023) Compactly Restrictable Metric Policy Optimization Problems ; IEEE Transactions on Automatic Control; Vol. 68; No. 5; 3115-3122; 10.1109/tac.2022.3217269
Voloshin, Cameron and Verma, Abhinav, et el. (2023) Eventual Discounting Temporal Logic Counterfactual Experience Replay
Huang, Yujia and Jimenez Rodriguez, Ivan Dario, et el. (2022) FI-ODE: Certified and Robust Forward Invariance in Neural ODEs ; 10.48550/arXiv.2210.16940
Sun, Jennifer J. and Tjandrasuwita, Megan, et el. (2022) Neurosymbolic Programming for Science ; 10.48550/arXiv.2210.05050
Tucker, Maegan and Li, Kejun, et el. (2022) POLAR: Preference Optimization and Learning Algorithms for Robotics ; 10.48550/arXiv.2208.04404
Sun, Jennifer J. and Ulmer, Andrew, et el. (2022) The MABe22 Benchmarks for Representation Learning of Multi-Agent Behavior ; 10.48550/arXiv.2207.10553
Sun, Jennifer J. and Karashchuk, Pierre, et el. (2022) BKinD-3D: Self-Supervised 3D Keypoint Discovery from Multi-View Videos ; 10.48550/arXiv.2212.07401
Dorobantu, Victor D. and Azizzadenesheli, Kamyar, et el. (2022) Compactly Restrictable Metric Policy Optimization Problems ; 10.48550/arXiv.arXiv.2207.05850
Voloshin, Cameron and Le, Hoang M., et el. (2022) Policy Optimization with Linear Temporal Logic Constraints ; 10.48550/arXiv.arXiv.2206.09546
Talukder, Sabera and Sun, Jennifer J., et el. (2022) Deep Neural Imputation: A Framework for Recovering Incomplete Brain Recordings ; 10.48550/arXiv.arXiv.2206.08094
Farhang, Alexander R. and Bernstein, Jeremy D., et el. (2022) Investigating Generalization by Controlling Normalized Margin ; Proceedings of Machine Learning Research; Vol. 162; 6324-6336; 10.48550/arXiv.arXiv.2205.03940
O'Connell, Michael and Shi, Guanya, et el. (2022) Neural-Fly enables rapid learning for agile flight in strong winds ; Science Robotics; Vol. 7; No. 66; Art. No. eabm6597; 10.1126/scirobotics.abm6597
Jimenez Rodriguez, Ivan Dario and Csomay-Shanklin, Noel, et el. (2022) Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies ; Proceedings of Machine Learning Research; Vol. 168; 1060-1072; 10.48550/arXiv.2204.08120
Daftry, Shreyansh and Abcouwer, Neil, et el. (2022) MLNav: Learning to Safely Navigate on Martian Terrains ; IEEE Robotics and Automation Letters; Vol. 7; No. 2; 5461-5468; 10.1109/lra.2022.3156654
Li, Kejun and Tucker, Maegan, et el. (2022) Natural Multicontact Walking for Robotic Assistive Devices via Musculoskeletal Models and Hybrid Zero Dynamics ; IEEE Robotics and Automation Letters; Vol. 7; No. 2; 4283-4290; 10.1109/lra.2022.3149568
Shi, Guanya and Hönig, Wolfgang, et el. (2022) Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms Using Learned Interactions ; IEEE Transactions on Robotics; Vol. 38; No. 2; 1063-1079; 10.1109/TRO.2021.3098436
Taylor, Andrew J. and Dorobantu, Victor D., et el. (2022) Safety of Sampled-Data Systems with Control Barrier Functions via Approximate Discrete Time Models ; 10.48550/arXiv.2203.11470
Cosner, Ryan K. and Jimenez Rodriguez, Ivan D., et el. (2022) Self-Supervised Online Learning for Safety-Critical Control using Stereo Vision ; 10.48550/arXiv.2203.01404
Zhan, Eric and Sun, Jennifer J., et el. (2022) Unsupervised Learning of Neurosymbolic Encoders ; 10.48550/arXiv.2107.13132
Bernstein, Jeremy and Farhang, Alex, et el. (2022) Kernel Interpolation as a Bayes Point Machine ; 10.48550/arXiv.2110.04274
Tseng, Albert and Sun, Jennifer J., et el. (2022) Automatic Synthesis of Diverse Weak Supervision Sources for Behavior Analysis ; 10.48550/arXiv.2111.15186
Cosner, Ryan K. and Tucker, Maegan, et el. (2022) Safety-Aware Preference-Based Learning for Safety-Critical Control ; 10.48550/arXiv.2112.08516
Sun, Jennifer J. and Ryou, Serim, et el. (2022) Self-Supervised Keypoint Discovery in Behavioral Videos ; 10.48550/arXiv.2112.05121
Tjandrasuwita, Megan and Sun, Jennifer J., et el. (2022) Interpreting Expert Annotation Differences in Animal Behavior ; 10.48550/arXiv.2106.06114
Jimenez Rodriguez, Ivan Dario and Ames, Aaron D., et el. (2022) LyaNet: A Lyapunov Framework for Training Neural ODEs ; 10.48550/arXiv.2202.02526
Jimenez Rodriguez, Ivan Dario and Ames, Aaron D., et el. (2022) LyaNet: A Lyapunov Framework for Training Neural ODEs ; Proceedings of Machine Learning Research; 18687-18703; 10.48550/arXiv.arXiv.2202.02526
Taylor, Andrew J. and Dorobantu, Victor D., et el. (2022) Sampled-Data Stabilization with Control Lyapunov Functions via Quadratically Constrained Quadratic Programs ; IEEE Control Systems Letters; Vol. 6; 680-685; 10.1109/LCSYS.2021.3085172
Taylor, Andrew J. and Dorobantu, Victor D., et el. (2021) Towards Robust Data-Driven Control Synthesis for Nonlinear Systems with Actuation Uncertainty ; ISBN 978-1-6654-3659-5; 2021 60th IEEE Conference on Decision and Control (CDC); 6469-6476; 10.1109/CDC45484.2021.9683511
Gao, Angela F. and Castellanos, Jorge C., et el. (2021) DeepGEM: Generalized Expectation-Maximization for Blind Inversion ; ISBN 9781713845393; 35th Conference on Neural Information Processing Systems; 1-12
Shi, Guanya and Azizzadenesheli, Kamyar, et el. (2021) Meta-Adaptive Nonlinear Control: Theory and Algorithms ; 10.48550/arXiv.2106.06098
Wittmann, Bruce J. and Yue, Yisong, et el. (2021) Informed training set design enables efficient machine learning-assisted directed protein evolution ; Cell Systems; Vol. 12; No. 11; 1026-1045; 10.1016/j.cels.2021.07.008
Jimenez Rodriguez, Ivan D. and Rosolia, Ugo, et el. (2021) Learning to Control an Unstable System with One Minute of Data: Leveraging Gaussian Process Differentiation in Predictive Control ; ISBN 978-1-6654-1714-3; 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 3896-3903; 10.1109/IROS51168.2021.9636786
Bagherian, Dawna and Gornet, James, et el. (2021) Fine-Grained System Identification of Nonlinear Neural Circuits ; ISBN 978-1-4503-8332-5; Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; 14-24; 10.1145/3447548.3467402
Ferber, Aaron and Song, Jialin, et el. (2021) Learning Pseudo-Backdoors for Mixed Integer Programs ; 10.48550/arXiv.2106.05080
Liu, Yang and Bernstein, Jeremy, et el. (2021) Learning by Turning: Neural Architecture Aware Optimisation ; Proceedings of Machine Learning Research; Vol. 139; 6748-6758; 10.48550/arXiv.2102.07227
Taylor, Andrew J. and Singletary, Andrew, et el. (2021) A Control Barrier Perspective on Episodic Learning via Projection-to-State Safety ; IEEE Control Systems Letters; Vol. 5; No. 3; 1019-1024; 10.1109/LCSYS.2020.3009082
Yin, Tianwei and Wu, Zihui, et el. (2021) End-to-End Sequential Sampling and Reconstruction for MR Imaging ; 10.48550/arXiv.2105.06460
Sun, Jennifer J. and Kennedy, Ann, et el. (2021) Task Programming: Learning Data Efficient Behavior Representations ; ISBN 978-1-6654-4509-2; 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2875-2884; 10.1109/CVPR46437.2021.00290
Li, Kejun and Tucker, Maegan, et el. (2021) ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton Gait Preference Landscapes ; ISBN 978-1-7281-9077-8; 2021 IEEE International Conference on Robotics and Automation (ICRA); 3212-3218; 10.1109/ICRA48506.2021.9560840
Ravi Tej, Akella and Azizzadenesheli, Kamyar, et el. (2021) Deep Bayesian Quadrature Policy Optimization ; 10.48550/arXiv.2006.15637
Sun, Jennifer J. and Karigo, Tomomi, et el. (2021) The Multi-Agent Behavior Dataset: Mouse Dyadic Social Interactions ; 10.48550/arXiv.2104.02710
Voloshin, Cameron and Jiang, Nan, et el. (2021) Minimax Model Learning ; Proceedings of Machine Learning Research; Vol. 130; 1612-1620; 10.48550/arXiv.2103.02084
Zhao, Eric and Liu, Anqi, et el. (2021) Active Learning under Label Shift ; Proceedings of Machine Learning Research; Vol. 130; 3412-3420; 10.48550/arXiv.2007.08479
Ho, Dimitar and Le, Hoang M., et el. (2021) Online Robust Control of Nonlinear Systems with Large Uncertainty ; Proceedings of Machine Learning Research; Vol. 130; 3475-3483; 10.48550/arXiv.2103.11055
Nakka, Yashwanth Kumar and Liu, Anqi, et el. (2021) Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems ; IEEE Robotics and Automation Letters; Vol. 6; No. 2; 389-396; 10.1109/LRA.2020.3044033
Qin, Yidan and Allan, Max, et el. (2021) Learning Invariant Representation of Tasks for Robust Surgical State Estimation ; IEEE Robotics and Automation Letters; Vol. 6; No. 2; 3208-3215; 10.1109/LRA.2021.3063014
Bernstein, Jeremy and Yue, Yisong (2021) Computing the Information Content of Trained Neural Networks ; 10.48550/arXiv.2103.01045
Abcouwer, Neil and Daftry, Shreyansh, et el. (2021) Machine Learning Based Path Planning for Improved Rover Navigation ; ISBN 978-1-7281-7436-5; 2021 IEEE Aerospace Conference; 1-9; 10.1109/AERO50100.2021.9438337
Liu, Anqi and Liu, Hao, et el. (2021) Disentangling Observed Causal Effects from Latent Confounders using Method of Moments ; 10.48550/arXiv.2101.06614
Cross, Logan and Cockburn, Jeffrey, et el. (2021) Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments ; Neuron; Vol. 109; No. 4; 724-738; PMCID PMC7897245; 10.1016/j.neuron.2020.11.021
Maser, Michael R. and Cui, Alexander Y., et el. (2021) Multilabel Classification Models for the Prediction of Cross-Coupling Reaction Conditions ; Journal of Chemical Information and Modeling; Vol. 61; No. 1; 156-166; 10.1021/acs.jcim.0c01234
Barnum, George and Talukder, Sabera, et el. (2021) On the Benefits of Early Fusion in Multimodal Representation Learning ; 10.48550/arXiv.2011.07191
Talukder, Sabera and Raghavan, Guruprasad, et el. (2021) Architecture Agnostic Neural Networks ; 10.48550/arXiv.2011.02712
Bernstein, Jeremy and Vahdat, Arash, et el. (2020) On the distance between two neural networks and the stability of learning ; ISBN 9781713829546; Advances in Neural Information Processing Systems 33 (NeurIPS 2020); 1-12
Marino, Joseph and Piché, Alexandre, et el. (2020) Iterative Amortized Policy Optimization ; ISBN 9781713829546; 34th Conference on Neural Information Processing Systems (NeurIPS 2020); 1-15
Shi, Guanya and Lin, Yiheng, et el. (2020) Online Optimization with Memory and Competitive Control ; ISBN 9781713829546; 34th Conference on Neural Information Processing Systems (NeurIPS 2020); 1-12
Yu, Chenkai and Shi, Guanya, et el. (2020) The Power of Predictions in Online Control ; ISBN 9781713829546; 34th Conference on Neural Information Processing Systems (NeurIPS 2020); 1-11
Song, Jialin and Lanka, Ravi, et el. (2020) A General Large Neighborhood Search Framework for Solving Integer Programs ; ISBN 9781713829546; 34th Conference on Neural Information Processing Systems (NeurIPS 2020); 1-12
Bernstein, Jeremy and Zhao, Jiawei, et el. (2020) Learning compositional functions via multiplicative weight updates ; 10.48550/arXiv.2006.14560
Kumar, Akash and Singla, Adish, et el. (2020) Average-case Complexity of Teaching Convex Polytopes via Halfspace Queries ; 10.48550/arXiv.2006.14677
Ryou, Serim and Maser, Michael R., et el. (2020) Graph Neural Networks for the Prediction of Substrate-Specific Organic Reaction Conditions ; 10.48550/arXiv.2007.04275
Yu, Chenkai and Shi, Guanya, et el. (2020) Competitive Control with Delayed Imperfect Information ; 10.48550/arXiv.2010.11637
Marino, Joseph and Piché, Alexandre, et el. (2020) Iterative Amortized Policy Optimization ; 10.48550/arXiv.2010.10670
Shah, Ameesh and Zhan, Eric, et el. (2020) Learning Differentiable Programs with Admissible Neural Heuristics ; 10.48550/arXiv.2007.12101
Prajapat, Manish and Azizzadenesheli, Kamyar, et el. (2020) Competitive Policy Optimization ; 10.48550/arXiv.2006.10611
Wang, Haoxuan and Liu, Anqi, et el. (2020) Distributionally Robust Learning for Unsupervised Domain Adaptation ; 10.48550/arXiv.2010.05784
Tucker, Maegan and Cheng, Myra, et el. (2020) Human Preference-Based Learning for High-dimensional Optimization of Exoskeleton Walking Gaits ; ISBN 978-1-7281-6212-6; 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 3423-3430; 10.1109/IROS45743.2020.9341416
Shi, Guanya and Hönig, Wolfgang, et el. (2020) Neural-Swarm: Decentralized Close-Proximity Multirotor Control Using Learned Interactions ; ISBN 978-1-7281-7395-5; 2020 IEEE International Conference on Robotics and Automation (ICRA); 3241-3247; 10.1109/ICRA40945.2020.9196800
Tucker, Maegan and Novoseller, Ellen, et el. (2020) Preference-Based Learning for Exoskeleton Gait Optimization ; ISBN 978-1-7281-7395-5; 2020 IEEE International Conference on Robotics and Automation (ICRA); 2351-2357; 10.1109/ICRA40945.2020.9196661
Novoseller, Ellen R. and Wei, Yibing, et el. (2020) Dueling Posterior Sampling for Preference-Based Reinforcement Learning ; Proceedings of Machine Learning Research; Vol. 124; 1029-1038; 10.48550/arXiv.1908.01289
Yu, Chenkai and Shi, Guanya, et el. (2020) The Power of Predictions in Online Control ; 10.48550/arXiv.2006.07569
Rivière, Benjamin and Hönig, Wolfgang, et el. (2020) GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning with End-to-End Learning ; IEEE Robotics and Automation Letters; Vol. 5; No. 3; 4249-4256; 10.1109/lra.2020.2994035
Taylor, Andrew J. and Singletary, Andrew, et el. (2020) Learning for Safety-Critical Control with Control Barrier Functions ; Proceedings of Machine Learning Research; Vol. 120; 708-717; 10.48550/arXiv.1912.10099
Song, Jialin and Lanka, Ravi, et el. (2020) A General Large Neighborhood Search Framework for Solving Integer Programs ; 10.48550/arXiv.2004.00422
Song, Jialin and Tokpanov, Yury S., et el. (2020) Mirrored Plasmonic Filter Design via Active Learning of Multi-Fidelity Physical Models ; ISBN 9781943580767; 2020 Conference on Lasers and Electro-Optics (CLEO); Art. No. JTu2D.6; 10.1364/cleo_at.2020.jtu2d.6
Bernstein, Jeremy and Vahdat, Arash, et el. (2020) On the distance between two neural networks and the stability of learning ; 10.48550/arXiv.2002.03432
Park, Jung Yeon and Carr, Kenneth Theo, et el. (2020) Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis ; 10.48550/arXiv.2002.05578
Shi, Guanya and Lin, Yiheng, et el. (2020) Online Optimization with Memory and Competitive Control ; 10.48550/arXiv.2002.05318
Zhan, Eric and Tseng, Albert, et el. (2020) Learning Calibratable Policies using Programmatic Style-Consistency ; 10.48550/arXiv.1910.01179
Voloshin, Cameron and Le, Hoang M., et el. (2020) Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning ; 10.48550/arXiv.1911.06854
Liu, Anqi and Liu, Hao, et el. (2020) Triply Robust Off-Policy Evaluation ; 10.48550/arXiv.1911.05811
Jin, Baihong and Tan, Yingshui, et el. (2019) An Encoder-Decoder Based Approach for Anomaly Detection with Application in Additive Manufacturing ; ISBN 978-1-7281-4550-1; 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA); 1008-1015; 10.1109/ICMLA.2019.00171
Ghosh, Nikhil and Chen, Yuxin, et el. (2019) Landmark Ordinal Embedding ; 10.48550/arXiv.1910.12379
Hunziker, Anette and Chen, Yuxin, et el. (2019) Teaching Multiple Concepts to Forgetful Learners ; 10.48550/arXiv.1805.08322
Liu, Yukai and Yu, Rose, et el. (2019) NAOMI: Non-Autoregressive Multiresolution Sequence Imputation ; 10.48550/arXiv.1901.10946
Taylor, Andrew J. and Dorobantu, Victor D., et el. (2019) A Control Lyapunov Perspective on Episodic Learning via Projection to State Stability ; ISBN 978-1-7281-1398-2; 2019 IEEE 58th Conference on Decision and Control (CDC); 1448-1455; 10.1109/CDC40024.2019.9029226
Verma, Abhinav and Le, Hoang M., et el. (2019) Imitation-Projected Policy Gradient for Programmatic Reinforcement Learning ; 10.48550/arXiv.1907.05431
Taylor, Andrew J. and Dorobantu, Victor D., et el. (2019) Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems ; ISBN 978-1-7281-4004-9; 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 6878-6884; 10.1109/IROS40897.2019.8967820
Song, Jialin and Lanka, Ravi, et el. (2019) Co-training for Policy Learning ; 10.48550/arXiv.1907.04484
Liu, Anqi and Shi, Guanya, et el. (2019) Robust Regression for Safe Exploration in Control ; 10.48550/arXiv.1906.05819
Cheng, Richard and Verma, Abhinav, et el. (2019) Control Regularization for Reduced Variance Reinforcement Learning ; Proceedings of Machine Learning Research; Vol. 97; 1141-1150; 10.48550/arXiv.1905.05380
Ahmadi, Mohamadreza and Wu, Bo, et el. (2019) Barrier Certificates for Assured Machine Teaching ; ISBN 978-1-5386-7926-5; 2019 American Control Conference (ACC); 3658-3663; 10.48550/arXiv.1810.00093
Le, Hoang M. and Voloshin, Cameron, et el. (2019) Batch Policy Learning under Constraints ; Proceedings of Machine Learning Research; Vol. 97; 3703-3712; 10.48550/arXiv.1903.08738
Shi, Guanya and Shi, Xichen, et el. (2019) Neural Lander: Stable Drone Landing Control using Learned Dynamics ; ISBN 978-1-5386-6027-0; 2019 International Conference on Robotics and Automation (ICRA); 9784-9790; 10.1109/ICRA.2019.8794351
Sui, Yanan and Zhuang, Vincent, et el. (2019) Multi-dueling Bandits with Dependent Arms ; 10.48550/arXiv.1705.00253
Song, Jialin and Chen, Yuxin, et el. (2019) A General Framework for Multi-fidelity Bayesian Optimization with Gaussian Processes ; Proceedings of Machine Learning Research; Vol. 89; 3158-3167; 10.48550/arXiv.1811.00755
Yang, Kevin K. and Chen, Yuxin, et el. (2019) Batched Stochastic Bayesian Optimization via Combinatorial Constraints Design ; Proceedings of Machine Learning Research; Vol. 89; 3410-3419; 10.48550/arXiv.1904.08102
Zhou, Jiaji and Ross, Stephane, et el. (2019) Knapsack Constrained Contextual Submodular List Prediction with Application to Multi-document Summarization ; 10.48550/arXiv.1308.3541
Song, Jialin and Tokpanov, Yury S., et el. (2019) Optimizing Photonic Nanostructures via Multi-fidelity Gaussian Processes ; 10.48550/arXiv.1811.07707
Sha, Long and Lucey, Patrick, et el. (2019) Fine-Grained Retrieval of Sports Plays using Tree-Based Alignment of Trajectories ; 10.48550/arXiv.1710.02255
Zhan, Eric and Zheng, Stephan, et el. (2019) Generative Multi-Agent Behavioral Cloning ; 10.48550/arXiv.1803.07612
Sui, Yanan and Yue, Yisong, et el. (2019) Correlational Dueling Bandits with Application to Clinical Treatment in Large Decision Spaces ; 10.48550/arXiv.1707.02375
Dathathri, Sumanth and Zheng, Stephan, et el. (2019) Detecting Adversarial Examples via Neural Fingerprinting ; 10.48550/arXiv.1803.03870
Song, Jialin and Lanka, Ravi, et el. (2019) Learning to Search via Retrospective Imitation ; 10.48550/arXiv.1804.00846
Yu, Rose and Zheng, Stephan, et el. (2019) Long-term Forecasting using Tensor-Train RNNs ; 10.48550/arXiv.1711.00073
Ross, Zachary E. and Yue, Yisong, et el. (2019) PhaseLink: A Deep Learning Approach to Seismic Phase Association ; Journal of Geophysical Research. Solid Earth; Vol. 124; No. 1; 856-869; 10.1029/2018JB016674
Meier, Men-Andrin and Ross, Zachary E., et el. (2019) Reliable Real-time Seismic Signal/Noise Discrimination with Machine Learning ; Journal of Geophysical Research. Solid Earth; Vol. 124; No. 1; 788-800; 10.1029/2018jb016661
Marino, Joseph and Cvitkovic, Milan, et el. (2018) A General Method for Amortizing Variational Filtering ; 10.48550/arXiv.1811.05090
Zheng, Stephan and Yu, Rose, et el. (2018) Multi-resolution Tensor Learning for Large-Scale Spatial Data ; 10.48550/arXiv.1802.06825
Marino, Joseph and Yue, Yisong, et el. (2018) Iterative Amortized Inference ; Proceedings of Machine Learning Research; Vol. 80; 3403-3412; 10.48550/arXiv.1807.09356
Sui, Yanan and Zhuang, Vincent, et el. (2018) Stagewise Safe Bayesian Optimization with Gaussian Processes ; Proceedings of Machine Learning Research; Vol. 80; 4781-4789; 10.48550/arXiv.1806.07555
Mac Aodha, Oisin and Su, Shihan, et el. (2018) Teaching categories to human learners with visual explanations ; ISBN 978-1-5386-6420-9; 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 3820-3828; 10.1109/CVPR.2018.00402
Sha, Long and Lucey, Patrick, et el. (2018) Interactive Sports Analytics: An Intelligent Interface for Utilizing Trajectories for Interactive Sports Play Retrieval and Analytics ; ACM Transactions on Computer-Human Interaction; Vol. 25; No. 2; Art. No. 13; 10.1145/3185596
Chen, Yuxin and Mac Aodha, Oisin, et el. (2018) Near-Optimal Machine Teaching via Explanatory Teaching Sets ; Proceedings of Machine Learning Research; Vol. 84; 1970-1978
Zhan, Eric and Zheng, Stephan, et el. (2018) Generating Multi-Agent Trajectories using Programmatic Weak Supervision ; 10.48550/arXiv.1803.07612
Le, Hoang M. and Jiang, Nan, et el. (2018) Hierarchical Imitation and Reinforcement Learning ; Proceedings of Machine Learning Research; Vol. 80; 2917-2926; 10.48550/arXiv.1803.00590
Chen, Yuxin and Singla, Adish, et el. (2018) Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners ; 10.48550/arXiv.1802.05190
Su, Shihan and Chen, Yuxin, et el. (2017) Interpretable Machine Teaching via Feature Feedback
Le, Hoang M. and Yue, Yisong, et el. (2017) Coordinated Multi-Agent Imitation Learning ; Proceedings of Machine Learning Research; Vol. 70; 1995-2003; 10.48550/arXiv.1703.03121
Taylor, Sarah and Kim, Taehwan, et el. (2017) A deep learning approach for generalized speech animation ; ACM Transactions on Graphics; Vol. 36; No. 4; Art. 93; 10.1145/3072959.3073699
Deng, Zhiwei and Navarathna, Rajitha, et el. (2017) Factorized Variational Autoencoders for Modeling Audience Reactions to Movies ; ISBN 978-1-5386-0457-1; 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 10.1109/CVPR.2017.637
Eyjolfsdottir, Eyrun and Branson, Kristin, et el. (2017) Learning recurrent representations for hierarchical behavior modeling ; 10.48550/arXiv.1611.00094
Le, Hoang M. and Carr, Peter, et el. (2017) Data-Driven Ghosting using Deep Imitation Learning
Zheng, Stephan and Yue, Yisong, et el. (2016) Generating Long-term Trajectories Using Deep Hierarchical Networks ; ISBN 9781510838819; Advances in Neural Information Processing Systems (NIPS 2016); 1551-1559; 10.48550/arXiv.1706.07138
Ruggero Ronchi, Matteo and Kim, Joon Sik, et el. (2016) A Rotation Invariant Latent Factor Model for Moveme Discovery from Static Poses ; ISBN 978-1-5090-5473-2; 16th IEEE International Conference on Data Mining (ICDM); 1179-1184; 10.1109/ICDM.2016.0156
Le, Hoang M. and Kang, Andrew, et el. (2016) Smooth Imitation Learning for Online Sequence Prediction ; Proceedings of Machine Learning Research; Vol. 48; 680-688; 10.48550/arXiv.1606.00968
Chen, Jianhui and Le, Hoang M., et el. (2016) Learning Online Smooth Predictors for Realtime Camera Planning using Recurrent Decision Trees ; ISBN 978-1-4673-8851-1; 2016 IEEE Conference on Computer Vision and Pattern Recognition; 4688-4696; 10.1109/CVPR.2016.507
Sha, Long and Lucey, Patrick, et el. (2016) Chalkboarding: A New Spatiotemporal Query Paradigm for Sports Play Retrieval ; ISBN 978-1-4503-4137-0; Proceedings of the 21st International Conference on Intelligent User Interfaces; 336-347; 10.1145/2856767.2856772
Krishnan, Kaushik and Marla, Lavanya, et el. (2016) Robust Ambulance Allocation Using Risk-based Metrics ; ISBN 978-1-4673-9622-6; 2016 8th International Conference on Communication Systems and Networks (COMSNETS); 1-6; 10.1109/COMSNETS.2016.7439958
Liu, Siyuan and Yue, Yisong, et el. (2015) Non-Myopic Adaptive Route Planning in Uncertain Congestion Environments ; IEEE Transactions on Knowledge and Data Engineering; Vol. 27; No. 9; 2438-2451; 10.1109/TKDE.2015.2411278
Kim, Taehwan and Taylor, Sarah, et el. (2015) A Decision Tree Framework for Spatiotemporal Sequence Prediction ; ISBN 978-1-4503-3664-2; Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 577-586; 10.1145/2783258.2783356
He, Bryan and Yue, Yisong (2015) Smooth Interactive Submodular Set Cover
Bialkowski, Alina and Lucey, Patrick, et el. (2014) Identifying Team Style in Soccer Using Formations Learned from Spatiotemporal Tracking Data ; ISBN 978-1-4799-4274-9; 2014 IEEE International Conference on Data Mining Workshop; 9-14; 10.1109/ICDMW.2014.167
Bialkowski, Alina and Lucey, Patrick, et el. (2014) Large-Scale Analysis of Soccer Matches Using Spatiotemporal Tracking Data ; ISBN 978-1-4799-4274-9; 2014 IEEE International Conference on Data Mining Workshop; 725-730; 10.1109/ICDM.2014.133
Yue, Yisong and Lucey, Patrick, et el. (2014) Learning Fine-Grained Spatial Models for Dynamic Sports Play Prediction ; ISBN 978-1-4799-4274-9; 2014 IEEE International Conference on Data Mining Workshop; 670-679; 10.1109/ICDM.2014.106
Yue, Yisong and Wang, Chong, et el. (2014) Personalized Collaborative Clustering ; 10.1145/2566486.2567991
Ross, Stephane and Zhou, Jiaji, et el. (2013) Learning Policies for Contextual Submodular Prediction ; Proceedings of Machine Learning Research; Vol. 28; No. 3; 1364-1372; 10.48550/arXiv.1305.2532
Liu, Siyuan and Yue, Yisong, et el. (2013) Adaptive Collective Routing Using Gaussian Process Dynamic Congestion Models ; ISBN 978-1-4503-2174-7; Proceedings of the 19th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining; 704-712; 10.1145/2487575.2487598
Yue, Yisong and Broder, Josef, et el. (2012) The K-armed dueling bandits problem ; Journal of Computer and System Sciences; Vol. 78; No. 5; 1538-1556; 10.1016/j.jcss.2011.12.028
Yue, Yisong and Hong, Sue Ann, et el. (2012) Hierarchical Exploration for Accelerating Contextual Bandits ; ISBN 978-1-4503-1285-1; ICML'12 Proceedings of the 29th International Coference on International Conference on Machine Learning; 979-986; 10.48550/arXiv.1206.6454
Chapelle, Olivier and Joachims, Thorsten, et el. (2012) Large-scale validation and analysis of interleaved search evaluation ; ACM Transactions on Information Systems; Vol. 30; No. 1; Art. No. 6; 10.1145/2094072.2094078
Yue, Yisong and Guestrin, Carlos (2011) Linear Submodular Bandits and their Application to Diversified Retrieval ; ISBN 9781618395993; Advances in Neural Information Processing Systems 24; 1-9
Radlinski, Filip and Yue, Yisong (2011) Practical Online Retrieval Evaluation ; ISBN 978-1-4503-0757-4; Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval; 1301; 10.1145/2009916.2010171
Brandt, Christina and Joachims, Thorsten, et el. (2011) Dynamic Ranked Retrieval ; ISBN 978-1-4503-0493-1; Proceedings of the 4th ACM international conference on Web search and data mining; 247-256; 10.1145/1935826.1935872
Yessenalina, Ainur and Yue, Yisong, et el. (2010) Multi-level structured models for document-level sentiment classification
Yue, Yisong and Gao, Yue, et el. (2010) Learning More Powerful Test Statistics for Click-Based Retrieval Evaluation ; ISBN 978-1-4503-0153-4; Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval; 507-514; 10.1145/1835449.1835534
Yue, Yisong and Patel, Rajan, et el. (2010) Beyond position bias: examining result attractiveness as a source of presentation bias in clickthrough data ; ISBN 978-1-60558-799-8; Proceedings of the 19th international conference on World wide web; 1011-1018; 10.1145/1772690.1772793
Joachims, Thorsten and Hofmann, Thomas, et el. (2009) Predicting Structured Objects with Support Vector Machines ; Communications of the ACM; Vol. 52; No. 11; 97-104; 10.1145/1592761.1592783
Yue, Yisong and Joachims, Thorsten (2009) Interactively Optimizing Information Retrieval Systems as a Dueling Bandits Problem ; ISBN 978-1-60558-516-1; Proceedings of the 26th International Conference on Machine Learning; 1201-1208; 10.1145/1553374.1553527
Yue, Yisong and Joachims, Thorsten (2008) Predicting Diverse Subsets Using Structural SVMs ; ISBN 978-1-60558-205-4; Proceedings of the 25th International Conference on Machine Learning; 1224-1231; 10.1145/1390156.1390310
Yue, Yisong and Finley, Thomas, et el. (2007) A Support Vector Method for Optimizing Average Precision ; ISBN 978-1-59593-597-7; Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval; 271-278; 10.1145/1277741.1277790