White, Nicholas C.; Troian, Sandra M. et al. (2020) Robust numerical computation of the 3D scalar potential field of the cubic Galileon gravity model at solar system scales Physical Review D; Vol. 102; No. 2; https://doi.org/10.1103/PhysRevD.102.024033
Albertson, Theodore G.; Troian, Sandra M. (2019) Electrified cone formation in perfectly conducting viscous liquids: Self-similar growth irrespective of Reynolds number Physics of Fluids; Vol. 31; No. 10; https://doi.org/10.1063/1.5123742
White, Nicholas C.; Troian, Sandra M. (2019) Why Capillary Flows in Slender Triangular Grooves Are So Stable Against Disturbances Physical Review Fluids; Vol. 4; No. 5; https://doi.org/10.1103/PhysRevFluids.4.054003
Fiedler, Kevin R.; McLeod, Euan et al. (2019) Differential Colorimetry Measurements of Fluctuation Growth in Nanofilms Exposed to Large Surface Thermal Gradients Journal of Applied Physics; Vol. 125; No. 6; https://doi.org/10.1063/1.5051456
Zhou, Chengzhe; Troian, Sandra M. (2019) Self-similar cuspidal formation by runaway thermocapillary forces in thin liquid films New Journal of Physics; Vol. 21; No. 1; https://doi.org/10.1088/1367-2630/aaf51d
Fiedler, Kevin R.; Troian, Sandra M. (2016) Early time instability in nanofilms exposed to a large transverse thermal gradient: Improved image and thermal analysis Journal of Applied Physics; Vol. 120; No. 20; https://doi.org/10.1063/1.4968575
McLeod, Euan; Liu, Yu et al. (2011) Experimental Verification of the Formation Mechanism for Pillar Arrays in Nanofilms Subject to Large Thermal Gradients Physical Review Letters; Vol. 106; No. 17; https://doi.org/10.1103/PhysRevLett.106.175501
Liu, Nan; Troian, Sandra M. (2011) Influence of gas rarefaction on the lateral resolution achievable by thermocapillary patterning Applied Physics Letters; Vol. 98; No. 6; https://doi.org/10.1063/1.3551535
Dietzel, Mathias; Troian, Sandra M. (2010) Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient Journal of Applied Physics; Vol. 108; No. 7; https://doi.org/10.1063/1.3475516
Darhuber, Anton A.; Valentino, Joseph P. et al. (2010) Planar digital nanoliter dispensing system based on thermocapillary actuation Lab on a Chip; Vol. 10; No. 8; https://doi.org/10.1039/b921759b
Dietzel, Mathias; Troian, Sandra M. (2009) Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses Physical Review Letters; Vol. 103; No. 7; https://doi.org/10.1103/PhysRevLett.103.074501
Davis, Jeffrey M.; Kataoka, Dawn E. et al. (2006) Transient dynamics and structure of optimal excitations in thermocapillary spreading: Precursor film model Physics of Fluids; Vol. 18; No. 9; https://doi.org/10.1063/1.2345372
Priezjev, Nikolai V.; Troian, Sandra M. (2006) Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions Journal of Fluid Mechanics; Vol. 554; https://doi.org/10.1017/S0022112006009086
Dussaud, Anne D.; Matar, Omar K. et al. (2005) Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment Journal of Fluid Mechanics; Vol. 544; https://doi.org/10.1017/S002211200500621X
Davis, Jeffrey M.; Troian, Sandra M. (2005) Generalized linear stability of noninertial coating flows over topographical features Physics of Fluids; Vol. 17; No. 7; https://doi.org/10.1063/1.1945627
Valentino, Joseph P.; Troian, Sandra M. et al. (2005) Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide Applied Physics Letters; Vol. 86; No. 18; https://doi.org/10.1063/1.1922075
Priezjev, Nikolai V.; Darhuber, Anton A. et al. (2005) Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations Physical Review E; Vol. 71; No. 4; https://doi.org/10.1103/PhysRevE.71.041608
Chen, Jian Z.; Troian, Sandra M. et al. (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation Journal of Applied Physics; Vol. 97; No. 1; https://doi.org/10.1063/1.1819979
Darhuber, Anton A.; Troian, Sandra M. (2005) Principles of microfluidic actuation by modulation of surface stresses Annual Review of Fluid Mechanics; Vol. 37; https://doi.org/10.1146/annurev.fluid.36.050802.122052
Chen, Jian Z.; Darhuber, Anton A. et al. (2004) Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation Lab on a Chip; Vol. 4; No. 5; https://doi.org/10.1039/b315815b
Davis, Jeffrey M.; Troian, Sandra M. (2004) Influence of boundary slip on the optimal excitations in thermocapillary driven spreading Physical Review E; Vol. 70; No. 4; https://doi.org/10.1103/PhysRevE.70.046309
Priezjev, Nikolai V.; Troian, Sandra M. (2004) Molecular Origin and Dynamic Behavior of Slip in Sheared Polymer Films Physical Review Letters; Vol. 92; No. 1; https://doi.org/10.1103/PhysRevLett.92.018302
Darhuber, Anton A.; Valentino, Jospeh P. et al. (2003) Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays Journal of Microelectromechanical Systems; Vol. 12; No. 6; https://doi.org/10.1109/JMEMS.2003.820267
Fischer, Benjamin J.; Troian, Sandra M. (2003) Thinning and disturbance growth in liquid films mobilized by continuous surfactant delivery Physics of Fluids; Vol. 15; No. 12; https://doi.org/10.1063/1.1623489
Miller, Scott M.; Troian, Sandra M. et al. (2003) Photoresist-free printing of amorphous silicon thin-film transistors Applied Physics Letters; Vol. 83; No. 15; https://doi.org/10.1063/1.1618364
Davis, Jeffrey M.; Troian, Sandra M. (2003) On a generalized approach to the linear stability of spatially nonuniform thin film flows Physics of Fluids; Vol. 15; No. 5; https://doi.org/10.1063/1.1564094
Darhuber, Anton A.; Davis, Jeffrey M. et al. (2003) Thermocapillary actuation of liquid flow on chemically patterned surfaces Physics of Fluids; Vol. 15; No. 5; https://resolver.caltech.edu/CaltechAUTHORS:DARpof03
Darhuber, Anton A.; Valentino, Joseph P. et al. (2003) Microfluidic actuation by modulation of surface stresses Applied Physics Letters; Vol. 82; No. 4; https://doi.org/10.1063/1.1537512
Fischer, Benjamin J.; Troian, Sandra M. (2003) Growth and decay of localized disturbances on a surfactant-coated spreading film Physical Review E; Vol. 67; No. 1; https://doi.org/10.1103/PhysRevE.67.016309
Davis, Jeffrey M.; Troian, Sandra M. (2003) Influence of attractive van der Waals interactions on the optimal excitations in thermocapillary-driven spreading Physical Review E; Vol. 67; No. 1; https://doi.org/10.1103/PhysRevE.67.016308
Miller, Scott M.; Troian, Sandra M. et al. (2002) Direct printing of polymer microstructures on flat and spherical surfaces using a letterpress technique Journal of Vacuum Science and Technology B; Vol. 20; No. 6; https://doi.org/10.1116/1.1520554
Darhuber, Anton A.; Troian, Sandra M. et al. (2002) Generation of high-resolution surface temperature distributions Journal of Applied Physics; Vol. 91; No. 9; https://doi.org/10.1063/1.1465506
Darhuber, Anton A.; Troian, Sandra M. et al. (2001) Physical mechanisms governing pattern fidelity in microscale offset printing Journal of Applied Physics; Vol. 90; No. 7; https://doi.org/10.1063/1.1389080
Darhuber, Anton A.; Troian, Sandra M. et al. (2001) Dynamics of capillary spreading along hydrophilic microstripes Physical Review E; Vol. 64; No. 3; https://doi.org/10.1103/PhysRevE.64.031603
Darhuber, Anton A.; Troian, Sandra M. et al. (2000) Selective dip-coating of chemically micropatterned surfaces Journal of Applied Physics; Vol. 88; No. 9; https://doi.org/10.1063/1.1317238
Cuk, Tanja; Troian, Sandra M. et al. (2000) Using convective flow splitting for the direct printing of fine copper lines Applied Physics Letters; Vol. 77; No. 13; https://doi.org/10.1063/1.1311954
Darhuber, Anton A.; Troian, Sandra M. et al. (2000) Morphology of liquid microstructures on chemically patterned surfaces Journal of Applied Physics; Vol. 87; No. 11; https://doi.org/10.1063/1.373452
Matar, Omar K.; Troian, Sandra M. (1999) The development of transient fingering patterns during the spreading of surfactant coated films Physics of Fluids; Vol. 11; No. 11; https://doi.org/10.1063/1.870185
Matar, Omar K.; Troian, Sandra M. (1999) Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures Chaos; Vol. 9; No. 1; https://doi.org/10.1063/1.166385
Dussaud, Anne D.; Troian, Sandra M. et al. (1998) Fluorescence visualization of a convective instability which modulates the spreading of volatile surface films Physics of Fluids; Vol. 10; No. 7; https://doi.org/10.1063/1.869678
Matar, Omar K.; Troian, Sandra M. (1998) Growth of non-modal transient structures during the spreading of surfactant coated films Physics of Fluids; Vol. 10; No. 5; https://doi.org/10.1063/1.869645
Dussaud, Anne D.; Troian, Sandra M. (1998) Dynamics of spontaneous spreading with evaporation on a deep fluid layer Physics of Fluids; Vol. 10; No. 1; https://doi.org/10.1063/1.869546
Matar, Omar K.; Troian, Sandra M. (1997) Linear stability analysis of an insoluble surfactant monolayer spreading on a thin liquid film Physics of Fluids; Vol. 9; No. 12; https://doi.org/10.1063/1.869502
Troian, Sandra M. (1993) Coalescence induced domain growth near a wall during spinodal decomposition Physical Review Letters; Vol. 71; No. 9; https://doi.org/10.1103/PhysRevLett.71.1399
Carles, P.; Troian, S. M. et al. (1990) Hydrodynamic fingering instability of driven wetting films: hindrance by diffusion Journal of Physics: Condensed Matter; Vol. 2; No. Supple; https://doi.org/10.1088/0953-8984/2/S/076
Troian, S. M.; Herbolzheimer, E. et al. (1990) Model for the fingering instability of spreading surfactant drops Physical Review Letters; Vol. 65; No. 3; https://doi.org/10.1103/PhysRevLett.65.333
Troian, S. M.; Wu, X. L. et al. (1989) Fingering instability in thin wetting films Physical Review Letters; Vol. 62; No. 13; https://doi.org/10.1103/PhysRevLett.62.1496
Mermin, N. D.; Troian, Sandra M. (1985) Mean-Field Theory of Quasicrystalline Order Physical Review Letters; Vol. 54; No. 14; https://doi.org/10.1103/PhysRevLett.54.1524