- Katti, Raj; Arora, Harpreet Singh; et el. (2023) Hot
Carrier Thermalization and Josephson Inductance Thermometry in a
Graphene-Based Microwave Circuit; Nano Letters; Vol. 23; No. 10;
4136-4141; 10.1021/acs.nanolett.2c04791
- Rochman, Jake; Xie, Tian; et el. (2023) Microwave-to-optical
transduction with erbium ions coupled to planar photonic and
superconducting resonators; Nature Communications; Vol. 14; Art.
No. 1153; PMCID PMC9977906; 10.1038/s41467-023-36799-0
- Rochman, Jake; Bartholomew, John G.; et el. (2019) Toward
Microwave-to-Optical Conversion using Erbium Doped Crystals and
Integrated Resonators; ISBN 978-1-943580-57-6; Art. No. FM1A.7; 10.1364/cleo_qels.2019.fm1a.7
- Erkmen, Baris I.; Shapiro, Jeffrey H.; et el. (2019) Quantum
Communication, Sensing and Measurement in Space; 10.26206/PTRZ-DA93
- Mauser, Kelly W.; Kim, Seyoon; et el. (2017) Resonant
Thermoelectric Nanophotonics; Nature Nanotechnology; Vol. 12; No. 8;
770-775; 10.1038/NNANO.2017.87
- Singh, S.; De Lorenzo, L. A.; et el. (2017) Detecting
continuous gravitational waves with superfluid ^4He; New Journal of
Physics; Vol. 19; Art. No. 073023; 10.1088/1367-2630/aa78cb
- De Lorenzo, L. A. and Schwab, K. C. (2017) Ultra-High
Q Acoustic Resonance in Superfluid ^4He; Journal of Low Temperature
Physics; Vol. 186; No. 3; 233-240; 10.1007/s10909-016-1674-x
- Lei, C. U.; Weinstein, A. J.; et el. (2016) Quantum
Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB
Limit; Physical Review Letters; Vol. 117; No. 10; Art. No. 100801;
10.1103/PhysRevLett.117.100801
- Habib, Salman; Bhattacharya, Tanmoy; et el. (2016) Nonlinear
Quantum Dynamics; 10.48550/arXiv.0505046
- Kaltenbaek, Rainer and Schwab, Keith C. (2015) Macroscopic
quantum resonators (MAQRO): 2015 Update; EPJ Quantum Technology;
Vol. 2016; No. 3; Art. No. 5; 10.1140/epjqt/s40507-016-0043-7
- Katz, B. N.; Blencowe, M. P.; et el. (2015) Mesoscopic
mechanical resonators as quantum noninertial reference frames;
Physical Review A; Vol. 92; No. 4; Art. No. 042104; 10.1103/PhysRevA.92.042104
- Wollman, E. E.; Lei, C. U.; et el. (2015) Quantum
squeezing of motion in a mechanical resonator; Science; Vol. 349;
No. 6251; 952-955; 10.1126/science.aac5138
- Weinstein, A. J.; Lei, C. U.; et el. (2014) Observation
and interpretation of motional sideband asymmetry in a quantum
electro-mechanical device; Physical Review X; Vol. 4; No. 4; Art.
No. 041003; 10.1103/PhysRevX.4.041003
- Suh, J.; Weinstein, A. J.; et el. (2014) Mechanically
Detecting and Avoiding the Quantum Fluctuations of a Microwave
Field; Science; Vol. 344; No. 6189; 1262-1265; 10.1126/science.1253258
- Steinke, S. K.; Singh, S.; et el. (2013) Quantum
backaction in spinor-condensate magnetometry; Physical Review A;
Vol. 88; No. 6; Art. No. 063809; 10.1103/PhysRevA.88.063809
- De Lorenzo, L. A. and Schwab, K. C. (2013) Superfluid
Optomechanics: Coupling of a Superfluid to a Superconducting
Condensate; New Journal of Physics; Vol. 16; Art. No. 113020; 10.1088/1367-2630/16/11/113020
- Fong, Kin Chung; Wollman, Emma E.; et el. (2013) Measurement
of the Electronic Thermal Conductance Channels and Heat Capacity of
Graphene at Low Temperature; Physical Review X; Vol. 3; No. 4; Art.
No. 041008; 10.1103/PhysRevX.3.041008
- Truitt, P. A.; Hertzberg, J. B.; et el. (2013) Linear
and nonlinear coupling between transverse modes of a nanomechanical
resonator; Journal of Applied Physics; Vol. 114; No. 11; Art.
No. 114307; 10.1063/1.4821273
- Steinke, Steven K.; Schwab, K. C.; et el. (2013) Optomechanical
backaction-evading measurement without parametric instability;
Physical Review A; Vol. 88; No. 2; Art. No. 023838; 10.1103/PhysRevA.88.023838
- Suh, J.; Weinstein, A. J.; et el. (2013) Optomechanical
effects of two-level systems in a back-action evading measurement of
micro-mechanical motion; Applied Physics Letters; Vol. 103; No. 5;
Art. No. 052604; 10.1063/1.4816428
- Suh, J.; Shaw, M.D.; et el. (2012) Thermally
Induced Parametric Instability in a Back-Action Evading Measurement of a
Micromechanical Quadrature near the Zero-Point Level; Nano Letters;
Vol. 12; No. 12; 6260-6265; 10.1021/nl303353r
- Kaltenbaek, Rainer; Hechenblaikner, Gerald; et el. (2012) Macroscopic
quantum resonators (MAQRO) - Testing quantum and gravitational physics
with massive mechanical resonators; Experimental Astronomy; Vol. 34;
No. 2; 123-164; 10.1007/s10686-012-9292-3
- Fong, K. C. and Schwab, K. C. (2012) Ultrasensitive
and Wide-Bandwidth Thermal Measurements of Graphene at Low
Temperatures; Physical Review X; Vol. 2; No. 3; Art. No. 031006; 10.1103/PhysRevX.2.031006
- Aspelmeyer, Markus; Meystre, Pierre; et el. (2012) Quantum
optomechanics; Physics Today; Vol. 65; No. 7; 29-35; 10.1063/PT.3.1640
- Steinke, S. K.; Singh, S.; et el. (2011) Quantum-measurement
backaction from a Bose-Einstein condensate coupled to a mechanical
oscillator; Physical Review A; Vol. 84; No. 2; Art. No. 023841; 10.1103/PhysRevA.84.023841
- Suh, Junho; LaHaye, Matthew D.; et el. (2010) Parametric
Amplification and Back-Action Noise Squeezing by a Qubit-Coupled
Nanoresonator; Nano Letters; Vol. 10; No. 10; 3990-3994; 10.1021/nl101844r
- Hertzberg, J. B.; Rocheleau, T.; et el. (2010) Back-action-evading
measurements of nanomechanical motion; Nature Physics; Vol. 6;
No. 3; 213-217; 10.1038/nphys1479
- Rocheleau, T.; Ndukum, T.; et el. (2010) Preparation
and detection of a mechanical resonator near the ground state of
motion; Nature; Vol. 463; No. 7277; 72-75; 10.1038/nature08681
- Gröblacher, Simon; Hertzberg, Jared B.; et el. (2009) Demonstration
of an ultracold micro-optomechanical oscillator in a cryogenic
cavity; Nature Physics; Vol. 5; No. 7; 485-488; 10.1038/nphys1301
- LaHaye, M. D.; Suh, J.; et el. (2009) Nanomechanical
measurements of a superconducting qubit; Nature; Vol. 459; No. 7249;
960-964; 10.1038/nature08093
- Woolley, M. J.; Doherty, A. C.; et el. (2008) Nanomechanical
squeezing with detection via a microwave cavity; Physical Review A;
Vol. 78; No. 6; Art. No. 062303; 10.1103/PhysRevA.78.062303
- LaHaye, Matt; Suh, Junho; et el. (2008) Coupling
a nanomechanical resonator to a Cooper-pair-box qubit; ISBN
978-1-55752-859-9; Art. No. JMA3; 10.1109/CLEO.2008.4551956
- Milburn, G. J.; Woolley, M. J.; et el. (2008) Superconducting
microwave cavities as quantum nanomechanical transducers; ISBN
978-1-55752-859-9; Art. No. JMA2; 10.1109/CLEO.2008.4551955
- Kemiktarak, U.; Ndukum, T.; et el. (2007) Radio-frequency
scanning tunnelling microscopy; Nature; Vol. 450; No. 7166; 85-88;
10.1038/nature06238
- Truitt, Patrick A.; Hertzberg, Jared B.; et el. (2007) Efficient
and Sensitive Capacitive Readout of Nanomechanical Resonator Arrays;
Nano Letters; Vol. 7; No. 1; 120-126; 10.1021/nl062278g
- Böhm, H. R.; Gigan, S.; et el. (2006) High
reflectivity high-Q micromechanical Bragg mirror; Applied Physics
Letters; Vol. 89; No. 22; Art. No. 223101; 10.1063/1.2393000
- Schwab, Keith (2006) Quantum
physics: Information on heat; Nature; Vol. 444; No. 7116; 161-162;
10.1038/444161a
- Gigan, S.; Böhm, H. R.; et el. (2006) Self-cooling
of a micromirror by radiation pressure; Nature; Vol. 444; No. 7115;
67-70; 10.1038/nature05273
- Naik, A.; Buu, O.; et el. (2006) Cooling
a nanomechanical resonator with quantum back-action; Nature; Vol.
443; No. 7108; 193-196; 10.1038/nature05027
- Stick, D.; Hensinger, W. K.; et el. (2006) Ion
trap in a semiconductor chip; Nature Physics; Vol. 2; No. 1; 36-39;
10.1038/nphys171
- Schwab, K. C.; Blencowe, M. P.; et el. (2005) Comment
on “Evidence for Quantized Displacement in Macroscopic Nanomechanical
Oscillators”; Physical Review Letters; Vol. 95; No. 24; Art. no.
248901; 10.1103/PhysRevLett.95.248901
- Irish, E. K.; Gea-Banacloche, J.; et el. (2005) Dynamics
of a two-level system strongly coupled to a high-frequency quantum
oscillator; Physical Review B; Vol. 72; No. 19; Art. No. 195410; 10.1103/PhysRevB.72.195410
- Hensinger, W. K.; Utami, D. W.; et el. (2005) Ion
trap transducers for quantum electromechanical oscillators; Physical
Review A; Vol. 72; No. 4; Art. No. 041405; 10.1103/PhysRevA.72.041405
- Fon, W. Chung; Schwab, Keith C.; et el. (2005) Nanoscale,
Phonon-Coupled Calorimetry with Sub-Attojoule/Kelvin Resolution;
Nano Letters; Vol. 5; No. 10; 1968-1971; 10.1021/nl051345o
- Schwab, Keith C. and Roukes, Michael L. (2005) Putting
mechanics into quantum mechanics; Physics Today; Vol. 58; No. 7;
36-42; 10.1063/1.2012461
- Ruskov, Rusko; Schwab, Keith; et el. (2005) Squeezing
of a nanomechanical resonator by quantum nondemolition measurement and
feedback; Physical Review B; Vol. 71; No. 23; Art. No. 235407; 10.1103/PhysRevB.71.235407
- Pelekhov, Denis V.; Selcu, Camelia; et el. (2005) Light-free
magnetic resonance force microscopy for studies of electron spin
polarized systems; Journal of Magnetism and Magnetic Materials; Vol.
286; 324-328; 10.1016/j.jmmm.2004.09.088
- Ruskov, Rusko; Schwab, Keith; et el. (2005) Quantum
Nondemolition Squeezing of a Nanomechanical Resonator; IEEE
Transactions On Nanotechnology; Vol. 4; No. 1; 132-140; 10.1109/TNANO.2004.840171
- Florez, S. H.; Dreyer, M.; et el. (2004) Magnetoresistive
effects in planar NiFe nanoconstrictions; Journal of Applied
Physics; Vol. 95; No. 11; Art. No. 6720; 10.1063/1.1682831
- LaHaye, M. D.; Buu, O.; et el. (2004) Approaching
the Quantum Limit of a Nanomechanical Resonator; Science; Vol. 304;
No. 5667; 74-77; 10.1126/science.1094419
- Hopkins, Asa; Jacobs, Kurt A.; et el. (2004) Cooling
a nanomechanical resonator using feedback: toward quantum behavior;
ISBN 0-8194-5169-X; 173-183; 10.1117/12.522091
- Hutchinson, A. B.; Truitt, P. A.; et el. (2004) Dissipation
in nanocrystalline-diamond nanomechanical resonators; Applied
Physics Letters; Vol. 84; No. 6; 972-974; 10.1063/1.1646213
- Hopkins, Asa; Jacobs, Kurt; et el. (2003) Feedback
cooling of a nanomechanical resonator; Physical Review B; Vol. 68;
No. 23; Art. No. 235328; 10.1103/PhysRevB.68.235328
- Irish, E. K. and Schwab, K. (2003) Quantum
measurement of a coupled nanomechanical resonator–Cooper-pair box
system; Physical Review B; Vol. 68; No. 15; Art. No. 155311; 10.1103/PhysRevB.68.155311
- Schwab, Keith (2003) Quantum
Electro-Mechanical Systems - Recipe to make a mechanical device
interfere with itself; ISBN 978-1-4020-1665-3; 245-258; 10.1007/978-94-007-1021-4_10
- Fon, W.; Schwab, K. C.; et el. (2002) Phonon
scattering mechanisms in suspended nanostructures from 4 to 40 K;
Physical Review B; Vol. 66; No. 4; Art. No. 045302; 10.1103/PhysRevB.66.045302
- Armour, A. D.; Blencowe, M. P.; et el. (2002) Mechanical
Lamb-shift analogue for the Cooper-pair box; Physica B; Vol. 316-31;
406-407; 10.1016/S0921-4526(02)00527-6
- Armour, A. D.; Blencowe, M. P.; et el. (2002) Entanglement
and Decoherence of a Micromechanical Resonator via Coupling to a
Cooper-Pair Box; Physical Review Letters; Vol. 88; No. 14; Art.
No. 148301; 10.1103/PhysRevLett.88.148301
- Schwab, K. (2002) Spring
constant and damping constant tuning of nanomechanical resonators using
a single-electron transistor; Applied Physics Letters; Vol. 80;
No. 7; Art. No. 1276; 10.1063/1.1449533
- Schwab, K.; Arlett, J. L.; et el. (2001) Thermal
conductance through discrete quantum channels; Physica E; Vol. 9;
No. 1; 60-68; 10.1016/S1386-9477(00)00178-8
- Schwab, Keith (2001) Quantum
measurement with nanomechanical systems; ISBN 1-58949-013-4;
189-194
- Schwab, K.; Fon, W.; et el. (2000) Quantized
thermal conductance: measurements in nanostructures; Physica B; Vol.
280; No. 1-4; 458-459; 10.1016/S0921-4526(99)01835-9
- Schwab, K.; Henriksen, E. A.; et el. (2000) Measurement
of the quantum of thermal conductance; Nature; Vol. 404; No. 6781;
974-977; 10.1038/35010065
- Schwab, K.; Bruckner, N.; et el. (1998) The
Superfluid ^4He Analog of the RF SQUID; Journal of Low Temperature
Physics; Vol. 110; No. 5; 1043-1104; 10.1023/A:1022364200234
- Schwab, K.; Bruckner, N.; et el. (1998) Detection
of absolute rotation using superfluid ^4He; Low Temperature Physics;
Vol. 24; No. 2; 102-104; 10.1063/1.593549
- Backhaus, S.; Schwab, K.; et el. (1997) Thermoviscous
effects in steady and oscillating flow of superfluid ^4He:
Experiments; Journal of Low Temperature Physics; Vol. 109; No. 3-4;
527-546; 10.1007/BF02396910
- Schwab, Keith; Bruckner, Niels; et el. (1997) Detection
of the Earth’s rotation using superfluid phase coherence; Nature;
Vol. 386; No. 6625; 585-587; 10.1038/386585a0
- Schwab, K.; Steinhauer, J.; et el. (1997) Phase-slip
memory effects in dissipation-free superflow; Physical Review B;
Vol. 55; No. 13; 8094-8097; 10.1103/PhysRevB.55.8094
- Schwab, Keith; Steinhauer, J.; et el. (1996) Fabrication
of a silicon-based superfluid oscillator; Journal of
Microelectromechanical Systems; Vol. 5; No. 3; 180-186; 10.1109/84.536624