(orcid 0000-0001-5687-2287)
Levin, Jon; Pacala, Steve et al. (2023) Extreme Weather Risk in a Changing Climate: Enhancing prediction and protecting communities https://resolver.caltech.edu/CaltechAUTHORS:20230531-170532586
De Jong, Emily K.; Bischoff, Tobias et al. (2022) Spanning the Gap from Bulk to Bin: A Novel Spectral Microphysics Method https://doi.org/10.1002/essoar.10511358.1
Lopez-Gomez, Ignacio; Christopoulos, Costa et al. (2022) Training physics-based machine-learning parameterizations with gradient-free ensemble Kalman methods https://doi.org/10.1002/essoar.10510937.2
Bieli, Melanie; Dunbar, Oliver R. A. et al. (2022) An efficient Bayesian approach to learning droplet collision kernels: Proof of concept using "Cloudy", a new n-moment bulk microphysics scheme https://doi.org/10.1002/essoar.10510248.1
Dunbar, Oliver R. A.; Howland, Michael F. et al. (2022) Ensemble-Based Experimental Design for Targeted High-Resolution Simulations to Inform Climate Models https://doi.org/10.1002/essoar.10510142.1
He, Jia; Cohen, Yair et al. (2020) An Improved Perturbation Pressure Closure for Eddy-Diffusivity Mass-Flux Schemes https://doi.org/10.1002/essoar.10505084.1
Singer, Clare E.; Lopez-Gomez, Ignacio et al. (2020) Top-of-atmosphere albedo bias from neglecting three-dimensional radiative transfer through clouds https://doi.org/10.1002/essoar.10504531.1
Schneider, Tapio; Stuart, Andrew M. et al. (2020) Ensemble Kalman Inversion for Sparse Learning of Dynamical Systems from Time-Averaged Data arXiv; https://doi.org/10.48550/arXiv.2007.06175
Schneider, Tapio; Stuart, Andrew M. et al. (2020) Learning Stochastic Closures Using Ensemble Kalman Inversion arXiv; https://doi.org/10.48550/arXiv.2004.08376