(orcid 0000-0002-2916-6026)
Tjahjono, Nikki; Jin, Yihan et al. (2022) Letting the little light of mind shine: Advances and future directions in neurochemical detection Neuroscience Research; Vol. 179; https://doi.org/10.1016/j.neures.2021.11.012
Sacher, Wesley D.; Chen, Fu-Der et al. (2022) Optical phased array neural probes for beam-steering in brain tissue Optics Letters; Vol. 47; No. 5; https://doi.org/10.1364/OL.441609
Wimsatt, Gregory; Saira, Olli-Pentti et al. (2021) Harnessing fluctuations in thermodynamic computing via time-reversal symmetries Physical Review Research; Vol. 3; No. 3; https://doi.org/10.1103/physrevresearch.3.033115
Sacher, Wesley D.; Chen, Fu-Der et al. (2021) Implantable photonic neural probes for light-sheet fluorescence brain imaging Neurophotonics; Vol. 8; No. 2; https://doi.org/10.1117/1.NPh.8.2.025003
Moreaux, Laurent C.; Yatsenko, Dimitri et al. (2020) Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity—at Depth and in Real Time Neuron; Vol. 108; No. 1; https://doi.org/10.1016/j.neuron.2020.09.043
Choi, Jaebin; Taal, Adriaan J. et al. (2020) Fully Integrated Time-Gated 3D Fluorescence Imager for Deep Neural Imaging IEEE Transactions on Biomedical Circuits and Systems; Vol. 14; No. 4; https://doi.org/10.1109/tbcas.2020.3008513
Saira, Olli-Pentti; Matheny, Matthew H. et al. (2020) Nonequilibrium thermodynamics of erasure with superconducting flux logic Physical Review Research; Vol. 2; No. 1; https://doi.org/10.1103/PhysRevResearch.2.013249
Saira, Olli-Pentti; Matheny, Matthew H. et al. (2020) Modification of electron-phonon coupling by micromachining and suspension Journal of Applied Physics; Vol. 127; No. 2; https://doi.org/10.1063/1.5132948
Sacher, Wesley D.; Luo, Xianshu et al. (2019) Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers Optics Express; Vol. 27; No. 26; https://doi.org/10.1364/oe.27.037400
Choi, Jaebin; Taal, Adriaan J. et al. (2019) A 512-Pixel, 51-kHz-Frame-Rate, Dual-Shank, Lens-Less, Filter-Less Single-Photon Avalanche Diode CMOS Neural Imaging Probe IEEE Journal of Solid-State Circuits; Vol. 54; No. 11; https://doi.org/10.1109/jssc.2019.2941529
Dykman, M. I.; Rastelli, Gianluca et al. (2019) Resonantly Induced Friction and Frequency Combs in Driven Nanomechanical Systems Physical Review Letters; Vol. 122; No. 25; https://doi.org/10.1103/physrevlett.122.254301
Whiting, Joshua J.; Myers, Edward et al. (2019) A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph Lab on a Chip; Vol. 19; No. 9; https://doi.org/10.1039/c9lc00027e
Matheny, Matthew H.; Emenheiser, Jeffrey et al. (2019) Exotic states in a simple network of nanoelectromechanical oscillators Science; Vol. 363; No. 6431; https://doi.org/10.1126/science.aav7932
Wang, Hongxia; Dewell, Richard B. et al. (2018) Optogenetic manipulation of medullary neurons in the locust optic lobe Journal of Neurophysiology; Vol. 120; No. 4; https://resolver.caltech.edu/CaltechAUTHORS:20181030-131638501
Sage, Eric; Sansa, Marc et al. (2018) Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators Nature Communications; Vol. 9; https://doi.org/10.1038/s41467-018-05783-4
Sader, John E.; Hanay, M. Selim et al. (2018) Mass spectrometry using nanomechanical systems: beyond the point-mass approximation Nano Letters; Vol. 18; No. 3; https://doi.org/10.1021/acs.nanolett.7b04301
Laurent, Ludovic; Yon, Jean-Jacques et al. (2018) 12−μm-Pitch Electromechanical Resonator for Thermal Sensing Physical Review Applied; Vol. 9; No. 2; https://doi.org/10.1103/PhysRevApplied.9.024016
Fon, Warren; Matheny, Matthew H. et al. (2017) Complex dynamical networks constructed with fully controllable nonlinear nanomechanical oscillators Nano Letters; Vol. 17; No. 10; https://doi.org/10.1021/acs.nanolett.7b02026
Segev, Eran; Reimer, Jacob et al. (2017) Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics Neurophotonics; Vol. 4; No. 1; https://doi.org/10.1117/1.NPh.4.1.011002
Atalaya, Juan; Kenny, Thomas W. et al. (2016) Nonlinear damping and dephasing in nanomechanical systems Physical Review B; Vol. 94; No. 19; https://doi.org/10.1103/PhysRevB.94.195440
Rios, Gustavo; Lubenov, Evgueniy V. et al. (2016) Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity Nano Letters; Vol. 16; No. 11; https://doi.org/10.1021/acs.nanolett.6b02673
Sansa, Marc; Sage, Eric et al. (2016) Frequency fluctuations in silicon nanoresonators Nature Nanotechnology; Vol. 11; No. 6; https://doi.org/10.1038/NNANO.2016.19
Alivisatos, A. Paul; Chun, Miyoung et al. (2015) A National Network of Neurotechnology Centers for the BRAIN Initiative Neuron; Vol. 88; No. 3; https://doi.org/10.1016/j.neuron.2015.10.015
Hanay, M. Selim; Kelber, Scott I. et al. (2015) Inertial Imaging with Nanomechanical Systems Nature Nanotechnology; Vol. 10; No. 4; https://doi.org/10.1038/nnano.2015.32
Sage, Eric; Brenac, Ariel et al. (2015) Neutral particle mass spectrometry with nanomechanical systems Nature Communications; Vol. 6; No. 3; https://doi.org/10.1038/ncomms7482
McCaig, Heather C.; Myers, Ed et al. (2014) Vapor Sensing Characteristics of Nanoelectromechanical Chemical Sensors Functionalized Using Surface-Initiated Polymerization Nano Letters; Vol. 14; No. 7; https://doi.org/10.1021/nl500475b
Matheny, Matthew H.; Grau, Matt et al. (2014) Phase Synchronization of Two Anharmonic Nanomechanical Oscillators Physical Review Letters; Vol. 112; No. 1; https://doi.org/10.1103/PhysRevLett.112.014101
Bullard, Elizabeth C.; Li, Jianchang et al. (2014) Dynamic Similarity of Oscillatory Flows Induced by Nanomechanical Resonators Physical Review Letters; Vol. 112; No. 1; https://doi.org/10.1103/PhysRevLett.112.015501
Villanueva, L. G.; Kenig, E. et al. (2013) Surpassing Fundamental Limits of Oscillators Using Nonlinear Resonators Physical Review Letters; Vol. 110; No. 17; https://doi.org/10.1103/PhysRevLett.110.177208
Zhang, X. C.; Myers, E. B. et al. (2013) Nanomechanical Torsional Resonators for Frequency-Shift Infrared Thermal Sensing Nano Letters; Vol. 13; No. 4; https://doi.org/10.1021/nl304687p
Matheny, M. H.; Villanueva, L. G. et al. (2013) Nonlinear Mode-Coupling in Nanomechanical Systems Nano Letters; Vol. 13; No. 4; https://doi.org/10.1021/nl400070e
Alivisatos, A. Paul; Scherer, Axel et al. (2013) Nanotools for Neuroscience and Brain Activity Mapping ACS Nano; Vol. 7; No. 3; https://doi.org/10.1021/nn4012847
Alivisatos, A. Paul; Chun, Miyoung et al. (2013) The Brain Activity Map Science; Vol. 339; No. 6125; https://doi.org/10.1126/science.1236939
Villanueva, L. G.; Karabalin, R. B. et al. (2013) Nonlinearity in nanomechanical cantilevers Physical Review B; Vol. 87; No. 2; https://doi.org/10.1103/PhysRevB.87.024304
Kenig, Eyal; Cross, M. C. et al. (2012) Optimal operating points of oscillators using nonlinear resonators Physical Review E; Vol. 86; No. 5; https://doi.org/10.1103/PhysRevE.86.056207
Hanay, M. S.; Kelber, S. et al. (2012) Single-protein nanomechanical mass spectrometry in real time Nature Nanotechnology; Vol. 7; No. 9; https://doi.org/10.1038/nnano.2012.119
Kenig, Eyal; Cross, M. C. et al. (2012) Passive Phase Noise Cancellation Scheme Physical Review Letters; Vol. 108; No. 26; https://doi.org/10.1103/PhysRevLett.108.264102
Alivisatos, A. Paul; Chun, Miyoung et al. (2012) The Brain Activity Map Project and the Challenge of Functional Connectomics Neuron; Vol. 74; No. 6; https://doi.org/10.1016/j.neuron.2012.06.006
Karabalin, R. B.; Villanueva, L. G. et al. (2012) Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams Physical Review Letters; Vol. 108; No. 23; https://doi.org/10.1103/PhysRevLett.108.236101
Bargatin, I.; Myers, E. B. et al. (2012) Large-Scale Integration of Nanoelectromechanical Systems for Gas Sensing Applications Nano Letters; Vol. 12; No. 3; https://doi.org/10.1021/nl2037479
Fanget, S.; Hentz, S. et al. (2011) Gas sensors based on gravimetric detection—A review Sensors and Actuators B: Chemical; Vol. 160; No. 1; https://doi.org/10.1016/j.snb.2011.08.066
Villanueva, L. Guillermo; Karabalin, Rassul B. et al. (2011) A Nanoscale Parametric Feedback Oscillator Nano Letters; Vol. 11; No. 11; https://doi.org/10.1021/nl2031162
Maizelis, Z. A.; Roukes, M. L. et al. (2011) Detecting and characterizing frequency fluctuations of vibrational modes Physical Review B; Vol. 84; No. 14; https://doi.org/10.1103/PhysRevB.84.144301
Ivaldi, P.; Abergel, J. et al. (2011) 50 nm thick AlN film-based piezoelectric cantilevers for gravimetric detection Journal of Micromechanics and Microengineering; Vol. 21; No. 8; https://doi.org/10.1088/0960-1317/21/8/085023
Yang, Y. T.; Callegari, C. et al. (2011) Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems Nano Letters; Vol. 11; No. 4; https://doi.org/10.1021/nl2003158
Arlett, J. L.; Myers, E. B. et al. (2011) Comparative advantages of mechanical biosensors Nature Nanotechnology; Vol. 6; No. 4; https://doi.org/10.1038/nnano.2011.44
Karabalin, R. B.; Lifshitz, Ron et al. (2011) Signal Amplification by Sensitive Control of Bifurcation Topology Physical Review Letters; Vol. 106; No. 9; https://doi.org/10.1103/PhysRevLett.106.094102
Karabalin, R. B.; Masmanidis, S. C. et al. (2010) Efficient parametric amplification in high and very high frequency piezoelectric nanoelectromechanical systems Applied Physics Letters; Vol. 97; No. 18; https://doi.org/10.1063/1.3505500
Arlett, J. L.; Roukes, M. L. (2010) Ultimate and practical limits of fluid-based mass detection with suspended microchannel resonators Journal of Applied Physics; Vol. 108; No. 8; https://doi.org/10.1063/1.3475151
Li, Mo; Myers, E. B. et al. (2010) Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis Nano Letters; Vol. 10; No. 10; https://doi.org/10.1021/nl101586s
Suh, Junho; LaHaye, Matthew D. et al. (2010) Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator Nano Letters; Vol. 10; No. 10; https://doi.org/10.1021/nl101844r
Feng, X. L.; Matheny, M. H. et al. (2010) Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires Nano Letters; Vol. 10; No. 8; https://doi.org/10.1021/nl1009734
Sadek, Akram S.; Karabalin, Rassul B. et al. (2010) Wiring Nanoscale Biosensors with Piezoelectric Nanomechanical Resonators Nano Letters; Vol. 10; No. 5; https://doi.org/10.1021/nl100245z
Lee, Wonhee; Fon, Warren et al. (2009) High-sensitivity microfluidic calorimeters for biological and chemical applications Proceedings of the National Academy of Sciences of the United States of America; Vol. 106; No. 36; https://doi.org/10.1073/pnas.0901447106
Karabalin, R. B.; Matheny, M. H. et al. (2009) Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films Applied Physics Letters; Vol. 95; No. 10; https://doi.org/10.1063/1.3216586
Karabalin, R. B.; Feng, X. L. et al. (2009) Parametric Nanomechanical Amplification at Very High Frequency Nano Letters; Vol. 9; No. 9; https://doi.org/10.1021/nl901057c
Du, Jiangang; Roukes, Michael L. et al. (2009) Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates Journal of Micromechanics and Microengineering; Vol. 19; No. 7; https://doi.org/10.1088/0960-1317/19/7/075008
Naik, A. K.; Hanay, M. S. et al. (2009) Towards single-molecule nanomechanical mass spectrometry Nature Nanotechnology; Vol. 4; No. 7; https://doi.org/10.1038/nnano.2009.152
LaHaye, M. D.; Suh, J. et al. (2009) Nanomechanical measurements of a superconducting qubit Nature; Vol. 459; No. 7249; https://doi.org/10.1038/nature08093
Karabalin, R. B.; Cross, M. C. et al. (2009) Nonlinear dynamics and chaos in two coupled nanomechanical resonators Physical Review B; Vol. 79; No. 16; https://doi.org/10.1103/PhysRevB.79.165309
Du, Jiangang; Riedel-Kruse, Ingmar H. et al. (2008) High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays Journal of Neurophysiology; Vol. 101; No. 3; https://doi.org/10.1152/jn.90992.2008
Feng, X. L.; White, C. J. et al. (2008) A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator Nature Nanotechnology; Vol. 3; No. 6; https://doi.org/10.1038/nnano.2008.125
He, Rongrui; Feng, X. L. et al. (2008) Self-Transducing Silicon Nanowire Electromechanical Systems at Room Temperature Nano Letters; Vol. 8; No. 6; https://doi.org/10.1021/nl801071w
Kozinsky, I.; Postma, H. W. Ch. et al. (2007) Basins of Attraction of a Nonlinear Nanomechanical Resonator Physical Review Letters; Vol. 99; No. 20; https://doi.org/10.1103/PhysRevLett.99.207201
Masmanidis, Sotiris C.; Karabalin, Rassul B. et al. (2007) Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation Science; Vol. 317; No. 5839; https://doi.org/10.1126/science.1144793
Feng, X. L.; He, Rongrui et al. (2007) Very High Frequency Silicon Nanowire Electromechanical Resonators Nano Letters; Vol. 7; No. 7; https://doi.org/10.1021/nl0706695
Honolka, J.; Masmanidis, S. et al. (2007) Magnetotransport properties of strained Ga0.95Mn0.05As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory Physical Review B; Vol. 75; No. 24; https://doi.org/10.1103/PhysRevB.75.245310
Tang, H. X.; Roukes, M. L. (2007) Magnetotransport and magnetocrystalline anisotropy in Ga1-xMnxAs epilayers Journal of Physics: Condensed Matter; Vol. 19; No. 16; https://doi.org/10.1088/0953-8984/19/16/165206
Bargatin, I.; Kozinsky, I. et al. (2007) Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators Applied Physics Letters; Vol. 90; No. 9; https://doi.org/10.1063/1.2709620
Li, Mo; Tang, H. X. et al. (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications Nature Nanotechnology; Vol. 2; No. 2; https://doi.org/10.1038/nnano.2006.208
Roukes, Michael (2006) Quantum physics: Observing and the observed Nature; Vol. 443; No. 7108; https://doi.org/10.1038/443154a
Tang, H. X.; Kawakami, R. K. et al. (2006) Propagation dynamics of individual domain walls in Ga1–xMnxAs microdevices Physical Review B; Vol. 74; No. 4; https://doi.org/10.1103/PhysRevB.74.041310
Kozinsky, I.; Postma, H. W. Ch. et al. (2006) Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators Applied Physics Letters; Vol. 88; No. 25; https://doi.org/10.1063/1.2209211
Urban, R.; Putilin, A. et al. (2006) Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy Physical Review B; Vol. 73; No. 21; https://doi.org/10.1103/PhysRevB.73.212410
Arlett, J. L.; Maloney, J. R. et al. (2006) Self-Sensing Micro- and Nanocantilevers with Attonewton-Scale Force Resolution Nano Letters; Vol. 6; No. 5; https://doi.org/10.1021/nl060275y
Yang, Y. T.; Callegari, C. et al. (2006) Zeptogram-Scale Nanomechanical Mass Sensing Nano Letters; Vol. 6; No. 4; https://doi.org/10.1021/nl052134m
Canaria, Christie A.; So, Jonathan et al. (2006) Formation and removal of alkylthiolate self-assembled monolayers on gold in aqueous solutions Lab on a Chip; Vol. 6; No. 2; https://doi.org/10.1039/b510661c
Schwab, K. C.; Blencowe, M. P. et al. (2005) Comment on "Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators" Physical Review Letters; Vol. 95; No. 24; https://doi.org/10.1103/PhysRevLett.95.248901
Huang, X. M. H.; Feng, X. L. et al. (2005) VHF, UHF and microwave frequency nanomechanical resonators New Journal of Physics; Vol. 7; No. 247; https://doi.org/10.1088/1367-2630/7/1/247
Masmanidis, S. C.; Tang, H. X. et al. (2005) Nanomechanical Measurement of Magnetostriction and Magnetic Anisotropy in (Ga,Mn)As Physical Review Letters; Vol. 95; No. 18; https://doi.org/10.1103/PhysRevLett.95.187206
Fon, W. Chung; Schwab, Keith C. et al. (2005) Nanoscale, Phonon-Coupled Calorimetry with Sub-Attojoule/Kelvin Resolution Nano Letters; Vol. 5; No. 10; https://doi.org/10.1021/nl051345o
Schwab, Keith C.; Roukes, Michael L. (2005) Putting mechanics into quantum mechanics Physics Today; Vol. 58; No. 7; https://doi.org/10.1063/1.2012461
Ekinci, K. L.; Roukes, M. L. (2005) Nanoelectromechanical systems Review of Scientific Instruments; Vol. 76; No. 6; https://doi.org/10.1063/1.1927327
Postma, H. W. Ch.; Kozinsky, I. et al. (2005) Dynamic range of nanotube- and nanowire-based electromechanical systems Applied Physics Letters; Vol. 86; No. 22; https://doi.org/10.1063/1.1929098
Bargatin, I.; Myers, E. B. et al. (2005) Sensitive detection of nanomechanical motion using piezoresistive signal downmixing Applied Physics Letters; Vol. 86; No. 13; https://doi.org/10.1063/1.1896103
Honolka, J.; Masmanidis, S. et al. (2005) Domain-wall dynamics at micropatterned constrictions in ferromagnetic (Ga,Mn)As epilayers Journal of Applied Physics; Vol. 97; No. 6; https://doi.org/10.1063/1.1861512
Tang, Hongxing; Roukes, Michael L. (2004) Electrical transport across an individual magnetic domain wall in (Ga,Mn)As microdevices Physical Review B; Vol. 70; No. 20; https://doi.org/10.1103/PhysRevB.70.205213
Santamore, D. H.; Goan, Hsi-Sheng et al. (2004) Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator Physical Review A; Vol. 70; No. 5; https://resolver.caltech.edu/CaltechAUTHORS:SANpra04
Tang, H. X.; Masmanidis, S. et al. (2004) Negative intrinsic resistivity of an individual domain wall in epitaxial (Ga,Mn)As microdevices Nature; Vol. 431; No. 7004; https://doi.org/10.1038/nature02809
Ekinci, K. L.; Huang, X. M. H. et al. (2004) Ultrasensitive nanoelectromechanical mass detection Applied Physics Letters; Vol. 84; No. 22; https://doi.org/10.1063/1.1755417
Ekinci, K. L.; Yang, Y. T. et al. (2004) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems Journal of Applied Physics; Vol. 95; No. 3; https://doi.org/10.1063/1.1642738
Bargatin, Igor; Roukes, M. L. (2003) Nanomechanical Analog of a Laser: Amplification of Mechanical Oscillations by Stimulated Zeeman Transitions Physical Review Letters; Vol. 91; No. 13; https://resolver.caltech.edu/CaltechAUTHORS:BARprl03
Husain, A.; Hone, J. et al. (2003) Nanowire-based very-high-frequency electromechanical resonator Applied Physics Letters; Vol. 83; No. 6; https://doi.org/10.1063/1.1601311
Hammel, P. Chris; Pelekhov, Denis V. et al. (2003) The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging Proceedings of the IEEE; Vol. 91; No. 5; https://doi.org/10.1109/JPROC.2003.811797
Tang, H. X.; Kawakami, R. K. et al. (2003) Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices Physical Review Letters; Vol. 90; No. 10; https://doi.org/10.1103/PhysRevLett.90.107201
Worlock, John M.; Roukes, Michael L. (2003) Applied physics: Son et lumière Nature; Vol. 421; No. 6925; https://doi.org/10.1038/421802a
Xue, Ming Henry Huang; Zorman, Christian A. et al. (2003) Nanodevice motion at microwave frequencies Nature; Vol. 421; No. 6922; https://doi.org/10.1038/421496a
Buks, Eyal; Roukes, Michael L. (2002) Electrically tunable collective response in a coupled micromechanical array Journal of Microelectromechanical Systems; Vol. 11; No. 6; https://doi.org/10.1109/JMEMS.2002.805056
Tang, H. X.; Huang, X. M. H. et al. (2002) Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems Applied Physics Letters; Vol. 81; No. 20; https://doi.org/10.1063/1.1516237
Ekinci, K. L.; Yang, Y. T. et al. (2002) Balanced electronic detection of displacement in nanoelectromechanical systems Applied Physics Letters; Vol. 81; No. 12; https://doi.org/10.1063/1.1507833
Buks, Eyal; Roukes, Michael L. (2002) Quantum physics: Casimir force changes sign Nature; Vol. 419; No. 6903; https://doi.org/10.1038/419119a
Cleland, A. N.; Roukes, M. L. (2002) Noise processes in nanomechanical resonators Journal of Applied Physics; Vol. 92; No. 5; https://doi.org/10.1063/1.1499745
Mohanty, P.; Harrington, D. A. et al. (2002) Intrinsic dissipation in high-frequency micromechanical resonators Physical Review B; Vol. 66; No. 8; https://doi.org/10.1103/PhysRevB.66.085416
Fon, W.; Schwab, K. C. et al. (2002) Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K Physical Review B; Vol. 66; No. 4; https://doi.org/10.1103/PhysRevB.66.045302
Suter, A.; Pelekhov, D. V. et al. (2002) Probe–Sample Coupling in the Magnetic Resonance Force Microscope Journal of Magnetic Resonance; Vol. 154; No. 2; https://doi.org/10.1006/jmre.2001.2472
Wolf, S. A.; Awschalom, D. D. et al. (2001) Spintronics: A Spin-Based Electronics Vision for the Future Science; Vol. 294; No. 5546; https://doi.org/10.1126/science.1065389
Roukes, Michael (2001) Plenty of Room Indeed Scientific American; Vol. 285; No. 3; https://resolver.caltech.edu/CaltechAUTHORS:20171106-124311994
Roukes, Michael L. (2001) Electronics in a spin Nature; Vol. 411; No. 6839; https://doi.org/10.1038/35081213
Roukes, Michael (2001) Nanoelectromechanical systems face the future Physics World; Vol. 14; No. 2; https://resolver.caltech.edu/CaltechAUTHORS:ROUpw01
Buks, E.; Roukes, M. L. (2001) Stiction, adhesion energy, and the Casimir effect in micromechanical systems Physical Review B; Vol. 63; No. 3; https://doi.org/10.1103/PhysRevB.63.033402
Yang, Y. T.; Ekinci, K. L. et al. (2001) Monocrystalline silicon carbide nanoelectromechanical systems Applied Physics Letters; Vol. 78; No. 2; https://doi.org/10.1063/1.1338959
Schwab, K.; Arlett, J. L. et al. (2001) Thermal conductance through discrete quantum channels Physica E; Vol. 9; No. 1; In: 11th International Winterschool on New Developments in Solid State Physics, February 21-25, 2000, Mauterndorf, Austria https://doi.org/10.1016/S1386-9477(00)00178-8
Blick, R. H.; Monzon, F. G. et al. (2000) Magnetotransport measurements on freely suspended two-dimensional electron gases Physical Review B; Vol. 62; No. 24; https://doi.org/10.1103/PhysRevB.62.17103
Monzon, F. G.; Tang, H. X. et al. (2000) Magnetoelectronic Phenomena at a Ferromagnet-Semiconductor Interface Physical Review Letters; Vol. 84; No. 21; https://doi.org/10.1103/PhysRevLett.84.5022
Schwab, K.; Fon, W. et al. (2000) Quantized thermal conductance: measurements in nanostructures Physica B; Vol. 280; No. 1-4; In: 22nd International Conference on Low Temperature Physics, August 4-11, 1999, Helsinki, Finland https://doi.org/10.1016/S0921-4526(99)01835-9
Midzor, M. M.; Wigen, P. E. et al. (2000) Imaging mechanisms of force detected FMR microscopy Journal of Applied Physics; Vol. 87; No. 9; https://doi.org/10.1063/1.372748
Schwab, K.; Henriksen, E. A. et al. (2000) Measurement of the quantum of thermal conductance Nature; Vol. 404; No. 6781; https://doi.org/10.1038/35010065
Tang, H. X.; Monzon, F. G. et al. (2000) Ballistic spin transport in a two-dimensional electron gas Physical Review B; Vol. 61; No. 7; https://doi.org/10.1103/PhysRevB.61.4437
Lifshitz, Ron; Roukes, M. L. (2000) Thermoelastic damping in micro- and nanomechanical systems Physical Review B; Vol. 61; No. 8; https://doi.org/10.1103/PhysRevB.61.5600
Roukes, M. L. (1999) Yoctocalorimetry: phonon counting in nanostructures Physica B; Vol. 263-264; https://doi.org/10.1016/S0921-4526(98)01482-3
Zhang, Z.; Hammel, P. C. et al. (1998) Ferromagnetic resonance force microscopy on microscopic cobalt single layer films Applied Physics Letters; Vol. 73; No. 14; https://doi.org/10.1063/1.122359
Suh, B. J.; Hammel, P. C. et al. (1998) Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy Journal of Vacuum Science and Technology B; Vol. 16; No. 4; https://doi.org/10.1116/1.590161
Cleland, A. N.; Roukes, M. L. (1998) A nanometre-scale mechanical electrometer Nature; Vol. 392; No. 6672; https://doi.org/10.1038/32373
Angelescu, D. E.; Cross, M et al. (1998) Heat transport in mesoscopic systems Superlattices and Microstructures; Vol. 23; No. 3-4; https://doi.org/10.1006/spmi.1997.0561
Monzon, F. G.; Johnson, Mark et al. (1997) Strong Hall voltage modulation in hybrid ferromagnet/semiconductor microstructures Applied Physics Letters; Vol. 71; No. 21; https://doi.org/10.1063/1.120254
Tighe, T. S.; Worlock, J. M. et al. (1997) Direct thermal conductance measurements on suspended monocrystalline nanostructures Applied Physics Letters; Vol. 70; No. 20; https://doi.org/10.1063/1.118994
Zhang, Z.; Roukes, M. L. et al. (1996) Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy Journal of Applied Physics; Vol. 80; No. 12; https://doi.org/10.1063/1.363767
Yurke, B.; Roukes, M. L. et al. (1996) A low-noise series-array Josephson junction parametric amplifier Applied Physics Letters; Vol. 69; No. 20; https://doi.org/10.1063/1.116845
Cleland, A. N.; Roukes, M. L. (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals Applied Physics Letters; Vol. 69; No. 18; https://doi.org/10.1063/1.117548
Schwabe, N. F.; Cleland, A. N. et al. (1995) Perturbation of tunneling processes by mechanical degrees of freedom in mesoscopic junctions Physical Review B; Vol. 52; No. 17; https://resolver.caltech.edu/CaltechAUTHORS:SCHWprb95
Shepard, K. L.; Roukes, M. L. et al. (1992) Experimental measurement of scattering coefficients in mesoscopic conductors Physical Review B; Vol. 46; No. 15; https://doi.org/10.1103/PhysRevB.46.9648
Shepard, K. L.; Roukes, M. L. et al. (1992) Direct measurement of the transmission matrix of a mesoscopic conductor Physical Review Letters; Vol. 68; No. 17; https://doi.org/10.1103/PhysRevLett.68.2660
Weiss, D.; Roukes, M. L. et al. (1991) Electron pinball and commensurate orbits in a periodic array of scatterers Physical Review Letters; Vol. 66; No. 21; https://doi.org/10.1103/PhysRevLett.66.2790
Roukes, M. L.; Alerhand, O. L. (1990) Mesoscopic junctions, random scattering, and strange repellers Physical Review Letters; Vol. 65; No. 13; https://doi.org/10.1103/PhysRevLett.65.1651
Roukes, M. L.; Scherer, A. et al. (1990) Are transport anomalies in "electron waveguides" classical? Physical Review Letters; Vol. 64; No. 10; https://doi.org/10.1103/PhysRevLett.64.1154
Thornton, T. J.; Roukes, M. L. et al. (1989) Boundary scattering in quantum wires Physical Review Letters; Vol. 63; No. 19; https://doi.org/10.1103/PhysRevLett.63.2128
Scherer, A.; Roukes, M. L. (1989) Quantum device microfabrication: Resolution limits of ion beam patterning Applied Physics Letters; Vol. 55; No. 4; https://doi.org/10.1063/1.101876
Cheeks, T. L.; Roukes, M. L. et al. (1988) Narrow conducting channels defined by helium ion beam damage Applied Physics Letters; Vol. 53; No. 20; https://doi.org/10.1063/1.100337
Scherer, A.; Craighead, H. G. et al. (1988) Electrical damage induced by ion beam etching of GaAs Journal of Vacuum Science and Technology B; Vol. 6; No. 1; https://doi.org/10.1116/1.584023
Roukes, M. L.; Scherer, A. et al. (1987) Quenching of the Hall Effect in a One-Dimensional Wire Physical Review Letters; Vol. 59; No. 26; https://doi.org/10.1103/PhysRevLett.59.3011
Scherer, A.; Roukes, M. L. et al. (1987) Ultranarrow conducting channels defined in GaAs-AlGaAs by low-energy ion damage Applied Physics Letters; Vol. 51; No. 25; https://doi.org/10.1063/1.98970
Freeman, M. R.; Germain, R. S. et al. (1986) Low-temperature nuclear magnetic resonance with a dc SQUID amplifier Applied Physics Letters; Vol. 48; No. 4; https://doi.org/10.1063/1.96587
Roukes, M. L.; Freeman, M. R. et al. (1985) Hot electrons and energy transport in metals at millikelvin temperatures Physical Review Letters; Vol. 55; No. 4; https://doi.org/10.1103/PhysRevLett.55.422
Hammel, P. C.; Roukes, M. L. et al. (1983) Magnetic Coupling between 3He and 19F at Low Temperatures Physical Review Letters; Vol. 51; No. 23; https://doi.org/10.1103/PhysRevLett.51.2124
Roukes, Michael L.; Wilkins, John W. (1982) Negative dynamic conductance from photon-assisted tunneling in superconducting junctions Applied Physics Letters; Vol. 41; No. 8; https://doi.org/10.1063/1.93671