(orcid 0000-0002-1653-3202)
Ross, Tyler D.; Osmanović, Dino et al. (2022) Ray Optics for Gliders ACS Nano; Vol. 16; No. 10; https://doi.org/10.1021/acsnano.2c05015
Maingi, Vishal; Zhang, Zhao et al. (2022) Digital nanoreactors for control over absolute stoichiometry and spatiotemporal behavior of receptors within lipid bilayers https://doi.org/10.1101/2022.10.04.509789
Ross, Tyler D.; Osmanović, Dino et al. (2021) Snell's Law for Swimmers arXiv; https://resolver.caltech.edu/CaltechAUTHORS:20211213-225017175
Shetty, Rishabh M.; Brady, Sarah R. et al. (2021) Bench-Top Fabrication of Single-Molecule Nanoarrays by DNA Origami Placement ACS Nano; Vol. 15; No. 7; https://doi.org/10.1021/acsnano.1c01150
Geary, Cody; Grossi, Guido et al. (2021) RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds Nature Chemistry; Vol. 13; No. 6; https://doi.org/10.1038/s41557-021-00679-1
Gopinath, Ashwin; Thachuk, Chris et al. (2021) Absolute and arbitrary orientation of single-molecule shapes Science; Vol. 371; No. 6531; https://doi.org/10.1126/science.abd6179
Maingi, Vishal; Rothemund, Paul W. K. (2021) Properties of DNA- and Protein-Scaffolded Lipid Nanodiscs ACS Nano; Vol. 15; No. 1; https://doi.org/10.1021/acsnano.0c07128
Liu, Di; Geary, Cody et al. (2020) Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures Nature Chemistry; Vol. 12; No. 3; https://resolver.caltech.edu/CaltechAUTHORS:20191016-120007639
Bathe, Mark; Rothemund, Paul W. K. (2017) DNA Nanotechnology: A foundation for Programmable Nanoscale Materials MRS Bulletin; Vol. 42; No. 12; https://doi.org/10.1557/mrs.2017.279
Mitskovets, Anna; Gopinath, Ashwin et al. (2016) Quantum dots coupled to chip-based dielectric resonators via DNA origami mediated assembly In: Nanophotonic Materials XIII; Series Proceedings of SPIE; No. 9919; In: SPIE Nanoscience + Engineering, 28 August - 1 September 2016, San Diego, CA https://doi.org/10.1117/12.2238451
Gopinath, Ashwin; Miyazono, Evan et al. (2016) Engineering and mapping nanocavity emission via precision placement of DNA origami Nature; Vol. 535; No. 7612; https://doi.org/10.1038/nature18287
Hsiao, Victoria; Hori, Yutaka et al. (2016) A population-based temporal logic gate for timing and recording chemical events Molecular Systems Biology; Vol. 12; No. 5; https://resolver.caltech.edu/CaltechAUTHORS:20151116-095719395
Gopinath, Ashwin; Rothemund, Paul W. K. (2014) Optimized Assembly and Covalent Coupling of Single-Molecule DNA Origami Nanoarrays ACS Nano; Vol. 8; No. 12; https://doi.org/10.1021/nn506014s
Woo, Sungwook; Rothemund, Paul W. K. (2014) Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion Nature Communications; Vol. 5; https://resolver.caltech.edu/CaltechAUTHORS:20141113-103546235
Geary, Cody; Rothemund, Paul W. K. et al. (2014) A single-stranded architecture for cotranscriptional folding of RNA nanostructures Science; Vol. 345; No. 6198; https://doi.org/10.1126/science.1253920
Rothemund, Paul W. K.; Andersen, Ebbe Sloth (2012) The importance of being modular Nature; Vol. 485; No. 7400; https://doi.org/10.1038/485584a
Rothemund, Paul W. K. (2012) Beyond Watson and Crick: Programming DNA Self-assembly for Nanofabrication In: IEEE-NEMS 2012: 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems; In: 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), March 5-8, 2012, Kyoto, Japan https://doi.org/10.1109/NEMS.2012.6196703
Woo, Sungwook; Rothemund, Paul W. K. (2011) Programmable molecular recognition based on the geometry of DNA nanostructures Nature Chemistry; Vol. 3; No. 8; https://doi.org/10.1038/NCHEM.1070
Maune, Hareem T.; Han, Si-ping et al. (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates Nature Nanotechnology; Vol. 5; No. 1; https://doi.org/10.1038/nnano.2009.311
Kershner, Ryan J.; Bozano, Luisa D. et al. (2009) Placement and orientation of individual DNA shapes on lithographically patterned surfaces Nature Nanotechnology; Vol. 4; No. 9; https://doi.org/10.1038/NNANO.2009.220
Barish, Robert D.; Schulman, Rebecca et al. (2009) An information-bearing seed for nucleating algorithmic self-assembly Proceedings of the National Academy of Sciences of the United States of America; Vol. 106; No. 15; https://doi.org/10.1073/pnas.0808736106
Venkataraman, Suvir; Dirks, Robert M. et al. (2007) An autonomous polymerization motor powered by DNA hybridization Nature Nanotechnology; Vol. 2; No. 8; https://doi.org/10.1038/nnano.2007.225
O'Neill, Patrick; Rothemund, Paul W. K. et al. (2006) Sturdier DNA nanotubes via ligation Nano Letters; Vol. 6; No. 7; https://doi.org/10.1021/nl0603505
Rothemund, Paul W. K. (2006) Folding DNA to create nanoscale shapes and patterns Nature; Vol. 440; No. 7082; https://doi.org/10.1038/nature04586
Rothemund, Paul W. K. (2006) Scaffolded DNA origami: from generalized multi-crossovers to polygonal networks In: Nanotechnology: Science and Computation; Nanotechnology: Science and Computation; Series Natural Computing Series; https://doi.org/10.1007/3-540-30296-4_1
Barish, Robert D.; Rothemund, Paul W. K. et al. (2005) Two computational primitives for algorithmic self-assembly: Copying and counting Nano Letters; Vol. 5; No. 12; https://doi.org/10.1021/nl052038l
Rothemund, Paul W. K.; Ekani-Nkodo, Axel et al. (2004) Design and characterization of programmable DNA nanotubes Journal of the American Chemical Society; Vol. 126; No. 50; https://doi.org/10.1021/ja044319l
Rothemund, Paul W. K.; Papadakis, Nick et al. (2004) Algorithmic Self-Assembly of DNA Sierpinski Triangles PLoS Biology; Vol. 2; No. 12; https://resolver.caltech.edu/CaltechAUTHORS:ROTpb04
Cook, Matthew; Rothemund, Paul W. K. et al. (2004) Self-assembled circuit patterns In: DNA Computing; Series Lecture Notes in Computer Science; No. 2943; In: 9th International Workshop on DNA Based Computers (DNA9), June 1-3, 2003, Madison, WI https://doi.org/10.1007/978-3-540-24628-2_11
Braich, Ravinderjit S.; Chelyapov, Nickolas et al. (2002) Solution of a 20-Variable 3-SAT Problem on a DNA Computer Science; Vol. 296; No. 5567; https://doi.org/10.1126/science.1069528
Adleman, Leonard; Cheng, Qi et al. (2002) Combinatorial optimization problems in self-assembly In: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, Montreal, Quebec, Canada, May 19-21, 2002 (STOC '02); https://resolver.caltech.edu/CaltechAUTHORS:ADLstoc02
Rothemund, Paul W. K.; Winfree, Erik (2000) The program-size complexity of self-assembled squares In: STOC '00 Proceedings of the thirty-second annual ACM symposium on Theory of computing; In: STOC00 The 32nd Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR https://doi.org/10.1145/335305.335358
Rothemund, Paul W. K. (2000) Using lateral capillary forces to compute by self-assembly Proceedings of the National Academy of Sciences of the United States of America; Vol. 97; No. 3; https://doi.org/10.1073/pnas.97.3.984
Adleman, Leonard M.; Rothemund, Paul W. K. et al. (1999) On Applying Molecular Computation to the Data Encryption Standard Journal of Computational Biology; Vol. 6; No. 1; https://doi.org/10.1089/cmb.1999.6.53
Roweis, Sam; Winfree, Erik et al. (1998) A sticker-based model for DNA computation Journal of Computational Biology; Vol. 5; No. 4; https://doi.org/10.1089/cmb.1998.5.615
Rothemund, Paul W. K. (1996) A DNA and restriction enzyme implementation of Turing Machines In: DNA based computers; Series DIMACS series in discrete mathematics and theoretical computer science; No. 27; https://resolver.caltech.edu/CaltechAUTHORS:20111024-134806267