- Chen, Zaiwei; Zhang, Kaiqing; et el. (2023) A
Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum
Stochastic Games
- Hardt, Moritz; Mazumdar, Eric; et el. (2023) Algorithmic
Collective Action in Machine Learning
- Maheshwari, Chinmay; Sasty, S. Shankar; et el. (2023) Convergent
First-Order Methods for Bi-level Optimization and Stackelberg
Games
- Zrnic, Tijana and Mazumdar, Eric (2022) A
Note on Zeroth-Order Optimization on the Simplex; 10.48550/arXiv.2208.01185
- Badithela, Apurva; Graebener, Josefine B.; et el. (2022) Synthesizing
Reactive Test Environments for Autonomous Systems: Testing Reach-Avoid
Specifications with Multi-Commodity Flows; 10.48550/arXiv.2210.10304
- Maheshwari, Chinmay; Mazumdar, Eric; et el. (2022) Decentralized,
Communication- and Coordination-free Learning in Structured Matching
Markets; 10.48550/arXiv.arXiv.2206.02344
- Xu, Pan; Zheng, Hongkai; et el. (2022) Langevin
Monte Carlo for Contextual Bandits; Proceedings of Machine Learning
Research; Vol. 162; 24830-24850; 10.48550/arXiv.arXiv.2206.11254
- Chasnov, Benjamin; Ratliff, Lillian J.; et el. (2021) Convergence
Analysis of Gradient-Based Learning with Non-Uniform Learning Rates in
Non-Cooperative Multi-Agent Settings; 10.48550/arXiv.1906.00731
- Yu, Yaodong; Lin, Tianyi; et el. (2021) Fast
Distributionally Robust Learning with Variance Reduced Min-Max
Optimization; 10.48550/arXiv.2104.13326
- Mazumdar, Eric; Pacchiano, Aldo; et el. (2021) On
Thompson Sampling with Langevin Algorithms; 10.48550/arXiv.2002.10002
- Dong, Roy; Mazumdar, Eric; et el. (2021) Optimal
Causal Imputation for Control; 10.48550/arXiv.1703.07049
- Mazumdar, Eric; Ratliff, Lillian J.; et el. (2021) Policy-Gradient
Algorithms Have No Guarantees of Convergence in Linear Quadratic
Games; 10.48550/arXiv.1907.03712
- Zrnic, Tijana; Mazumdar, Eric; et el. (2021) Who
Leads and Who Follows in Strategic Classification?; 10.48550/arXiv.2106.12529
- Maheshwari, Chinmay; Chiu, Chih-Yuan; et el. (2021) Zeroth-Order
Methods for Convex-Concave Minmax Problems: Applications to
Decision-Dependent Risk Minimization; 10.48550/arXiv.2106.09082
- Westenbroek, Tyler; Mazumdar, Eric; et el. (2020) Adaptive
Control for Linearizable Systems Using On-Policy Reinforcement
Learning; ISBN 978-1-7281-7447-1; 118-125; 10.1109/CDC42340.2020.9304242
- Mazumdar, Eric; Westenbroek, Tyler; et el. (2020) High
Confidence Sets for Trajectories of Stochastic Time-Varying Nonlinear
Systems; ISBN 978-1-7281-7447-1; 4275-4280; 10.1109/CDC42340.2020.9304491
- Rubies-Royo, Vicenç; Mazumdar, Eric; et el. (2020) Expert
Selection in High-Dimensional Markov Decision Processes; ISBN
978-1-7281-7447-1; 3604-3610; 10.1109/CDC42340.2020.9303788
- Chasnov, Benjamin; Ratliff, Lillian; et el. (2020) Convergence
Analysis of Gradient-Based Learning in Continuous Games; Proceedings
of Machine Learning Research; Vol. 115; 935-944
- Westenbroek, Tyler; Fridovich-Keil, David; et el. (2020) Feedback
Linearization for Uncertain Systems via Reinforcement Learning; ISBN
978-1-7281-7395-5; 1364-1371; 10.1109/ICRA40945.2020.9197158
- Ratliff, Lillian J. and Mazumdar, Eric (2020) Inverse
Risk-Sensitive Reinforcement Learning; IEEE Transactions on
Automatic Control; Vol. 65; No. 3; 1256-1263; 10.1109/TAC.2019.2926674
- Mazumdar, Eric; Ratliff, Lillian J.; et el. (2020) On
Gradient-Based Learning in Continuous Games; SIAM Journal on
Mathematics of Data Science; Vol. 2; No. 1; 103-131; 10.1137/18m1231298
- Mazumdar, Eric and Ratliff, Lillian J. (2019) Local
Nash Equilibria are Isolated, Strict Local Nash Equilibria in ‘Almost
All’ Zero-Sum Continuous Games; ISBN 978-1-7281-1398-2; 6899-6904;
10.1109/CDC40024.2019.9030203
- Mazumdar, Eric; Jordan, Michael I.; et el. (2019) On
Finding Local Nash Equilibria (and Only Local Nash Equilibria) in
Zero-Sum Games; 10.48550/arXiv.1901.00838
- Chapman, Margaret P.; Mazumdar, Eric V.; et el. (2018) On
the Analysis of Cyclic Drug Schedules for Cancer Treatment using
Switched Dynamical Systems; ISBN 978-1-5386-1395-5; 3503-3509; 10.1109/CDC.2018.8619490
- Mazumdar, Eric; Ratliff, Lillian J.; et el. (2017) Gradient-based
inverse risk-sensitive reinforcement learning; ISBN
978-1-5090-2873-3; 5796-5801; 10.1109/CDC.2017.8264535
- Mazumdar, Eric; Dong, Roy; et el. (2017) A
Multi-Armed Bandit Approach for Online Expert Selection in Markov
Decision Processes; 10.48550/arXiv.1707.05714
- Ratliff, Lillian J.; Dowling, Chase; et el. (2016) To
observe or not to observe: Queuing game framework for urban parking;
ISBN 978-1-5090-1837-6; 5286-5291; 10.1109/CDC.2016.7799079
- Calderone, Daniel; Mazumdar, Eric; et el. (2016) Understanding
the impact of parking on urban mobility via routing games on queue-flow
networks; 10.1109/CDC.2016.7799444