- Gregoire, John M.; Zhou, Lan; et el. (2023) Combinatorial
synthesis for AI-driven materials discovery; Nature Synthesis; Vol.
2; No. 6; 493-504; 10.1038/s44160-023-00251-4
- Statt, Michael J.; Rohr, Brian A.; et el. (2023) The
Materials Experiment Knowledge Graph; 10.26434/chemrxiv-2023-md55t
- Watkins, Nicholas B.; Schiffer, Zachary J.; et el. (2023) Hydrodynamics
Change Tafel Slopes in Electrochemical CO₂ Reduction on Copper; ACS
Energy Letters; Vol. 8; No. 5; 2185-2192; 10.1021/acsenergylett.3c00442
- Statt, Michael J.; Rohr, Brian A.; et el. (2023) The
Materials Provenance Store; Scientific Data; Vol. 10; Art. No. 184;
PMCID PMC10079965; 10.1038/s41597-023-02107-0
- Watkins, Nicholas B.; Schiffer, Zachary J.; et el. (2023) Hydrodynamics
Determine Tafel Slopes in Electrochemical CO₂ Reduction on Copper;
10.26434/chemrxiv-2023-npdmn
- Rao, Karun K.; Zhou, Lan; et el. (2023) Resolving
atomistic structure and oxygen evolution activity in nickel
antimonates; Journal of Materials Chemistry A; Vol. 11; No. 10;
5166-5178; 10.1039/d2ta08854a
- Zhou, Lan; Peterson, Elizabeth A.; et el. (2022) Fe
Substitutions Improve Spectral Response of Bi₂WO₆-Based Photoanodes;
ACS Applied Energy Materials; Vol. 5; No. 12; 15333-15344; 10.1021/acsaem.2c02964
- Zhou, Lan; Wang, Yu; et el. (2022) Surveying
Metal Antimonate Photoanodes for Solar Fuel Generation; ACS
Sustainable Chemistry & Engineering; Vol. 10; No. 48; 15898-15908;
10.1021/acssuschemeng.2c05239
- Zhou, Lan; Guevarra, Dan; et el. (2022) High
throughput discovery of enhanced visible photoactivity in Fe–Cr vanadate
solar fuels photoanodes; Journal of Physics: Energy; Vol. 4; No. 4;
Art. No. 044001; 10.1088/2515-7655/ac817e
- Burke Stevens, Michaela; Anand, Megha; et el. (2022) New
challenges in oxygen reduction catalysis: a consortium retrospective to
inform future research; Energy and Environmental Science; Vol. 15;
No. 9; 3775-3794; 10.1039/d2ee01333a
- Segev, Gideon; Kibsgaard, Jakob; et el. (2022) The
2022 solar fuels roadmap; Journal of Physics D: Applied Physics;
Vol. 55; No. 32; Art. No. 323003; 10.1088/1361-6463/ac6f97
- Greenaway, Ann L.; Ke, Sijia; et el. (2022) Zinc
Titanium Nitride Semiconductor toward Durable Photoelectrochemical
Applications; Journal of the American Chemical Society; Vol. 144;
No. 30; 13673-13687; PMCID PMC9354241; 10.1021/jacs.2c04241
- Zhou, Lan; Peterson, Elizabeth A.; et el. (2022) Addressing
solar photochemistry durability with an amorphous nickel antimonate
photoanode; Cell Reports Physical Science; Vol. 3; No. 7; Art.
No. 100959; 10.1016/j.xcrp.2022.100959
- Yano, Junko; Gaffney, Kelly J.; et el. (2022) The
case for data science in experimental chemistry: examples and
recommendations; Nature Reviews Chemistry; Vol. 6; No. 5; 357-370;
10.1038/s41570-022-00382-w
- Guevarra, Dan; Zhou, Lan; et el. (2022) Materials
structure–property factorization for identification of synergistic phase
interactions in complex solar fuels photoanodes; npj Computational
Materials; Vol. 8; Art. No. 57; 10.1038/s41524-022-00747-1
- Rahmanian, Fuzhan; Flowers, Jackson; et el. (2022) Enabling
Modular Autonomous Feedback-Loops in Materials Science through
Hierarchical Experimental Laboratory Automation and Orchestration;
Advanced Materials Interfaces; Vol. 9; No. 8; Art. No. 2101987; 10.1002/admi.202101987
- Lai, Yungchieh; Watkins, Nicholas B.; et el. (2022) Molecular
Coatings Improve the Selectivity and Durability of CO₂ Reduction
Chalcogenide Photocathodes; ACS Energy Letters; Vol. 7; No. 3;
1195-1201; 10.1021/acsenergylett.1c02762
- Zhou, Lan; Li, Hao; et el. (2022) Stability
and Activity of Cobalt Antimonate for Oxygen Reduction in Strong
Acid; ACS Energy Letters; Vol. 7; No. 3; 993-1000; 10.1021/acsenergylett.1c02673
- Kong, Shufeng; Ricci, Francesco; et el. (2022) Density
of states prediction for materials discovery via contrastive learning
from probabilistic embeddings; Nature Communications; Vol. 13; Art.
No. 949; 10.1038/s41467-022-28543-x
- Rao, Karun K.; Lai, Yungchieh; et el. (2022) Overcoming
Hurdles in Oxygen Evolution Catalyst Discovery via Codesign;
Chemistry of Materials; Vol. 34; No. 3; 899-910; 10.1021/acs.chemmater.1c04120
- Lamaison, Sarah; Wakerley, David; et el. (2022) Designing
a Zn–Ag Catalyst Matrix and Electrolyzer System for CO₂ Conversion to CO
and Beyond; Advanced Materials; Vol. 34; No. 1; Art. No. 2103963; 10.1002/adma.202103963
- Guevarra, Dan; Haber, Joel A.; et el. (2022) High
Throughput Discovery of Complex Metal Oxide Electrocatalysts for the
Oxygen Reduction Reaction; Electrocatalysis; Vol. 13; No. 1; 1-10;
10.1007/s12678-021-00694-3
- Ament, Sebastian; Amsler, Maximilian; et el. (2021) Autonomous
materials synthesis via hierarchical active learning of nonequilibrium
phase diagrams; Science Advances; Vol. 7; No. 51; Art. No. abg4930;
PMCID PMC8682983; 10.1126/sciadv.abg4930
- Lai, Yunchieh; Watkins, Nicholas B.; et el. (2021) Breaking
Scaling Relationships in CO₂ Reduction on Copper Alloys with Organic
Additives; ACS Central Science; Vol. 7; No. 10; 1756-1762; PMCID
PMC8554824; 10.1021/acscentsci.1c00860
- Richter, Matthias H.; Peterson, Elizabeth A.; et el. (2021) Band
Edge Energy Tuning through Electronic Character Hybridization in Ternary
Metal Vanadates; Chemistry of Materials; Vol. 33; No. 18; 7242-7253;
10.1021/acs.chemmater.1c01415
- Yang, Lusann; Haber, Joel A.; et el. (2021) Discovery
of complex oxides via automated experiments and data science;
Proceedings of the National Academy of Sciences; Vol. 118; No. 37; Art.
No. e2106042118; PMCID PMC8449358; 10.1073/pnas.2106042118
- Stach, Eric; DeCost, Brian; et el. (2021) Autonomous
experimentation systems for materials development: A community
perspective; Matter; Vol. 4; No. 9; 2702-2726; 10.1016/j.matt.2021.06.036
- Chen, Di; Bai, Yiwei; et el. (2021) Automating
crystal-structure phase mapping by combining deep learning with
constraint reasoning; Nature Machine Intelligence; Vol. 3; No. 9;
812-822; 10.1038/s42256-021-00384-1
- Wang, Lei; Peng, Hongjie; et el. (2021) Bimetallic
effects on Zn-Cu electrocatalysts enhance activity and selectivity for
the conversion of CO₂ to CO; Chem Catalysis; Vol. 1; No. 3; 663-680;
10.1016/j.checat.2021.05.006
- Gomes, Carla P.; Fink, Daniel; et el. (2021) Computational
sustainability meets materials science; Nature Reviews Materials;
Vol. 6; No. 8; 645-647; 10.1038/s41578-021-00348-2
- Statt, Michael J.; Rohr, Brian A.; et el. (2021) ESAMP:
Event-Sourced Architecture for Materials Provenance Management and
Application to Accelerated Materials Discovery; 10.26434/chemrxiv.14583258.v1
- Li, Hao; Kelly, Sara; et el. (2021) Analysis
of the limitations in the oxygen reduction activity of transition metal
oxide surfaces; Nature Catalysis; Vol. 4; No. 6; 463-468; 10.1038/s41929-021-00618-w
- Kong, Shufeng; Guevarra, Dan; et el. (2021) Materials
representation and transfer learning for multi-property prediction;
Applied Physics Reviews; Vol. 8; No. 2; Art. No. 021409; 10.1063/5.0047066
- Newhouse, Paul F.; Zhou, Lan; et el. (2020) Bi
Alloying into Rare Earth Double Perovskites Enhances Synthesizability
and Visible Light Absorption; ACS Combinatorial Science; Vol. 22;
No. 12; 895-901; 10.1021/acscombsci.0c00177
- Sutherland, Duncan R.; Connolly, Aine Boyer; et el. (2020) Optical
Identification of Materials Transformations in Oxide Thin Films; ACS
Combinatorial Science; Vol. 22; No. 12; 887-894; 10.1021/acscombsci.0c00172
- Newhouse, Paul F.; Guevarra, Dan; et el. (2020) Enhanced
Bulk Transport in Copper Vanadate Photoanodes Identified by
Combinatorial Alloying; Matter; Vol. 3; No. 5; 1601-1613; 10.1016/j.matt.2020.08.032
- Zhou, Lan; Shinde, Aniketa; et el. (2020) Quaternary
Oxide Photoanode Discovery Improves the Spectral Response and
Photovoltage of Copper Vanadates; Matter; Vol. 3; No. 5; 1614-1630;
10.1016/j.matt.2020.08.031
- Chen, Di; Bai, Yiwei; et el. (2020) Deep
Reasoning Networks for Unsupervised Pattern De-mixing with Constraint
Reasoning; Proceedings of Machine Learning Research; Vol. 119;
1500-1509
- Zhang, Zemin; Lindley, Sarah A.; et el. (2020) Fermi
Level Engineering of Passivation and Electron Transport Materials for
p-Type CuBi₂O₄ Employing a High‐Throughput Methodology; Advanced
Functional Materials; Vol. 30; No. 24; Art. No. 2000948; 10.1002/adfm.202000948
- Umehara, Mitsutaro; Zhou, Lan; et el. (2020) Combinatorial
synthesis of oxysulfides in the lanthanum-bismuth-copper system; ACS
Combinatorial Science; Vol. 22; No. 6; 319-326; 10.1021/acscombsci.0c00015
- Zhou, Lan; Shinde, Aniketa; et el. (2020) On
the successes and opportunities for discovery of metal oxide photoanodes
for solar fuels generators; ACS Energy Letters; Vol. 5; No. 5;
1413-1421; 10.1021/acsenergylett.0c00067
- Yao, Yonggang; Huang, Zhennan; et el. (2020) High-throughput,
combinatorial synthesis of multimetallic nanoclusters; Proceedings
of the National Academy of Sciences of the United States of America;
Vol. 117; No. 12; 6316-6322; PMCID PMC7104385; 10.1073/pnas.1903721117
- Rohr, Brian; Stein, Helge S.; et el. (2020) Benchmarking
the Acceleration of Materials Discovery by Sequential Learning;
Chemical Science; Vol. 11; No. 10; 2696-2706; 10.1039/c9sc05999g
- Zhou, Lan; Shinde, Aniketa; et el. (2020) Combinatorial
screening yields discovery of 29 metal oxide photoanodes for solar fuel
generation; Journal of Materials Chemistry A; Vol. 8; No. 8;
4239-4243; 10.1039/c9ta13829c
- Lai, Yungchieh; Jones, Ryan J. R.; et el. (2019) The
Sensitivity of Cu for Electrochemical Carbon Dioxide Reduction to
Hydrocarbons as Revealed by High Throughput Experiments; Journal of
Materials Chemistry A; Vol. 7; No. 47; 26785-26790; 10.1039/c9ta10111j
- Aykol, Muratahan and Gregoire, John M. (2019) The
Materials Research Platform: Defining the Requirements from User
Stories; Matter; Vol. 1; No. 6; 1433-1438; 10.1016/j.matt.2019.10.024
- Noh, Juhwan; Kim, Sungwon; et el. (2019) Unveiling
new stable manganese based photoanode materials via theoretical
high-throughput screening and experiments; Chemical Communications;
Vol. 55; No. 89; 13418-13421; 10.1039/c9cc06736a
- Stein, Helge S. and Gregoire, John M. (2019) Progress
and prospects for accelerating materials science with automated and
autonomous workflows; Chemical Science; Vol. 10; No. 42; 9640-9649;
PMCID PMC7020936; 10.1039/c9sc03766g
- Noh, Juhwan; Kim, Jaehoon; et el. (2019) Inverse
Design of Solid-State Materials via a Continuous Representation;
Matter; Vol. 1; No. 5; 1370-1384; 10.1016/j.matt.2019.08.017
- Lai, Yungchieh; Jones, Ryan J. R.; et el. (2019) Scanning
electrochemical flow cell with online mass spectroscopy for accelerated
screening of carbon dioxide reduction electrocatalysts; ACS
Combinatorial Science; Vol. 21; No. 10; 692-704; 10.1021/acscombsci.9b00130
- Gregoire, John M. (2019) Unexpected
Transitions Yield Interesting Science and High-Performance
Materials; Matter; Vol. 1; No. 4; 790-791; 10.1016/j.matt.2019.09.006
- Gomes, Carla and Gregoire, John (2019) Computational
sustainability: computing for a better world and a sustainable
future; Communications of the ACM; Vol. 62; No. 9; 56-65; 10.1145/3339399
- Haber, Joel; Stein, Helge S.; et el. (2019) Functional
mapping reveals mechanistic clusters for OER catalysis across
(Cu-Mn-Ta-Co-Sn-Fe)Ox composition and pH space
- Newhouse, Paul; Guevarra, Dan; et el. (2019) Multi-modal
optimization of bismuth vanadate photoanodes via combinatorial alloying
and hydrogen processing
- Soedarmadji, Edwin; Stein, Helge S.; et el. (2019) Tracking
materials science data lineage to manage millions of materials
experiments and analyses; npj Computational Materials; Vol. 5; Art.
No. 79; 10.1038/s41524-019-0216-x
- Ament, Sebastian E.; Stein, Helge S.; et el. (2019) Multi-component
background learning automates signal detection for spectroscopic
data; npj Computational Materials; Vol. 5; Art. No. 77; 10.1038/s41524-019-0213-0
- Stein, Helge S.; Guevarra, Dan; et el. (2019) Functional
mapping reveals mechanistic clusters for OER catalysis across
(Cu–Mn–Ta–Co–Sn–Fe)O_x composition and pH space; Materials Horizons;
Vol. 6; No. 6; 1251-1258; 10.1039/c8mh01641k
- Gomes, Carla P.; Selman, Bart; et el. (2019) Artificial
intelligence for materials discovery; MRS Bulletin; Vol. 44; No. 7;
538-544; 10.1557/mrs.2019.158
- Gomes, Carla P.; Bai, Junwen; et el. (2019) CRYSTAL:
a multi-agent AI system for automated mapping of materials’ crystal
structures; MRS Communications; Vol. 9; No. 2; 600-608; 10.1557/mrc.2019.50
- Bai, Junwen; Lai, Zihang; et el. (2019) Imitation
Refinement for X-ray Diffraction Signal Processing; ISBN
978-1-5386-4658-8; 3337-3341; 10.1109/ICASSP.2019.8683723
- Stein, Helge S.; Soedarmadji, Edwin; et el. (2019) Synthesis,
optical imaging, and absorption spectroscopy data for 179072 metal
oxides; Scientific Data; Vol. 6; Art. No. 9; PMCID PMC6437643; 10.1038/s41597-019-0019-4
- Umehara, Mitsutaro; Stein, Helge S.; et el. (2019) Analyzing
machine learning models to accelerate generation of fundamental
materials insights; npj Computational Materials; Vol. 5; Art.
No. 34; 10.1038/s41524-019-0172-5
- Singh, Arunima K.; Montoya, Joseph H.; et el. (2019) Robust
and synthesizable photocatalysts for CO₂ reduction: a data-driven
materials discovery; Nature Communications; Vol. 10; Art. No. 443;
PMCID PMC6347635; 10.1038/s41467-019-08356-1
- Newhouse, P. F.; Guevarra, D.; et el. (2019) Multi-modal
optimization of bismuth vanadate photoanodes via combinatorial alloying
and hydrogen processing; Chemical Communications; Vol. 55; No. 4;
489-492; 10.1039/c8cc07156j
- Stein, Helge S.; Guevarra, Dan; et el. (2019) Machine
learning of optical properties of materials - predicting spectra from
images and images from spectra; Chemical Science; Vol. 10; No. 1;
47-55; PMCID PMC6334722; 10.1039/c8sc03077d
- Alberi, Kirstin and Gregoire, John (2019) The
2019 materials by design roadmap; Journal of Physics D: Applied
Physics; Vol. 52; No. 1; Art. No. 013001; 10.1088/1361-6463/aad926
- Liu, Guiji; Eichhorn, Johanna; et el. (2019) Interface
engineering for light-driven water oxidation: unravelling the
passivating and catalytic mechanism in BiVO₄ overlayers; Sustainable
Energy and Fuels; Vol. 3; No. 1; 127-135; 10.1039/C8SE00473K
- Zhou, Lan; Shinde, Aniketa; et el. (2018) Rutile
alloys in the Mn-Sb-O system stabilize Mn^(+3) to enable oxygen
evolution in strong acid; ACS Catalysis; Vol. 8; No. 12;
10938-10948; 10.1021/acscatal.8b02689
- Jones, Ryan J. R.; Wang, Yu; et el. (2018) Reactor
design and integration with product detection to accelerate screening of
electrocatalysts for carbon dioxide reduction; Review of Scientific
Instruments; Vol. 89; No. 12; Art. No. 124102; 10.1063/1.5049704
- Zhou, Lan; Shinde, Aniketa; et el. (2018) Bi-containing
n-FeWO_4 Thin Films Provide the Largest Photovoltage and Highest
Stability for a sub-2 eV Band Gap Photoanode; ACS Energy Letters;
Vol. 3; No. 11; 2769-2774; 10.1021/acsenergylett.8b01514
- Zhou, Lan; Shinde, Aniketa; et el. (2018) Balancing
Surface Passivation and Catalysis with Integrated BiVO_4/(Fe-Ce)O_x
Photoanodes in pH 9 Borate Electrolyte; ACS Applied Energy
Materials; Vol. 1; No. 10; 5766-5771; 10.1021/acsaem.8b01377
- Newhouse, P. F.; Guevarra, D.; et el. (2018) Combinatorial
Alloying Improves Bismuth Vanadate Photoanodes via Reduced Monoclinic
Distortion; Energy and Environmental Science; Vol. 11; No. 9;
2444-2457; 10.1039/c8ee00179k
- Bai, Junwen; Ament, Sebastian; et el. (2018) An
Efficient Relaxed Projection Method for Constrained Non-negative Matrix
Factorization with Application to the Phase-Mapping Problem in Materials
Science; ISBN 978-3-319-93030-5; 52-62; 10.1007/978-3-319-93031-2_4
- Suram, Santosh K.; Zhou, Lan; et el. (2018) Alkaline-stable
nickel manganese oxides with ideal band gap for solar fuel
photoanodes; Chemical Communications; Vol. 54; No. 36; 4625-4628; 10.1039/c7cc08002f
- Gregoire, John (2018) Accelerated
experimental materials discovery through integration with theory and
artificial intelligence
- Haber, Joel; Guevarra, Dan; et el. (2018) Development
of solar fuels photoanodes through combinatorial integration of
multifunctional Fe-Ce oxide coatings on BiVO4 as a function of coating
composition, loading, and electrolyte
- Haber, Joel; Guevarra, Dan; et el. (2018) High
throughput, multi-pH evaluation of earth-abundant pseudo-quaternary
metal oxide catalysts for the oxygen evolution reaction
- Bai, Junwen; Xue, Yexiang; et el. (2018) Phase
Mapper: Accelerating Materials Discovery with AI; AI Magazine; Vol.
39; No. 1; 15-26; 10.1609/aimag.v39i1.2785
- Suram, Santosh K.; Fackler, Sean W.; et el. (2018) Combinatorial
Discovery of Lanthanum-Tantalum Oxynitride Solar Light Absorbers with
Dilute Nitrogen for Solar Fuels Applications; ACS Combinatorial
Science; Vol. 20; No. 1; 26-34; 10.1021/acscombsci.7b00143
- Gregoire, John M.; Boyd, David A.; et el. (2018) High
Throughput Experimentation for the Discovery of Water Splitting
Materials; ISBN 978-1-78262-555-1; 307-340; 10.1039/9781788010313-00305
- Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; et el. (2017) Discovery
and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth
Manganate Photoanode; Chemistry of Materials; Vol. 29; No. 23;
10027-10036; 10.1021/acs.chemmater.7b03591
- Singh, Arunima K.; Zhou, Lan; et el. (2017) Electrochemical
Stability of Metastable Materials; Chemistry of Materials; Vol. 29;
No. 23; 10159-10167; 10.1021/acs.chemmater.7b03980
- Shinde, Aniketa; Suram, Santosh K.; et el. (2017) Discovery
of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic
Structure Calculations, Pourbaix Stability Modeling, and High-Throughput
Experiments; ACS Energy Letters; Vol. 2; No. 10; 2307-2312; 10.1021/acsenergylett.7b00607
- Liu, Guiji; Eichhorn, Johanna; et el. (2017) Optical,
morphological, and electrochemical multimodal characterization for
integrated BiVO4 photoanodes
- Bai, Junwen; Bjorck, Johan; et el. (2017) Relaxation
Methods for Constrained Matrix Factorization Problems: Solving the Phase
Mapping Problem in Materials Discovery; ISBN 978-3-319-59775-1;
104-112; 10.1007/978-3-319-59776-8_9
- Haber, Joel; Guevarra, Dan; et el. (2017) Development
of solar fuels photoanodes through combinatorial integration of Ni-
La-Co-Ce oxide and Ni-Fe-Co-Ce oxide catalysts on BiVO₄
- Gregoire, John (2017) High
throughput discovery of solar fuels photoanodes
- Newhouse, Paul; Boyd, David; et el. (2017) Solar
fuels photoanodes prepared by inkjet printing of copper
vanadates
- Yan, Qimin; Yu, Jie; et el. (2017) Solar
fuels photoanode materials discovery by integrating high-throughput
theory and experiment; Proceedings of the National Academy of
Sciences of the United States of America; Vol. 114; No. 12; 3040-3043;
PMCID PMC5373381; 10.1073/pnas.1619940114
- Green, M. L.; Choi, C. L.; et el. (2017) Fulfilling
the promise of the materials genome initiative with high-throughput
experimental methodologies; Applied Physics Reviews; Vol. 4; No. 1;
Art. No. 011105; 10.1063/1.4977487
- Favaro, Marco; Drisdell, Walter S.; et el. (2017) An
Operando Investigation of (Ni-Fe-Co-Ce)O_x System as Highly Efficient
Electrocatalyst for Oxygen Evolution Reaction; ACS Catalysis; Vol.
7; No. 2; 1248-1258; 10.1021/acscatal.6b03126
- Suram, Santosh K.; Xue, Yexiang; et el. (2017) Automated
Phase Mapping with AgileFD and its Application to Light Absorber
Discovery in the V-Mn-Nb Oxide System; ACS Combinatorial Science;
Vol. 19; No. 1; 37-46; 10.1021/acscombsci.6b00153
- Suram, Santosh K.; Newhouse, Paul F.; et el. (2016) High
Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated
Tauc Analysis; ACS Combinatorial Science; Vol. 18; No. 11; 673-681;
10.1021/acscombsci.6b00053
- Suram, Santosh K.; Newhouse, Paul F.; et el. (2016) High
Throughput Light Absorber Discovery, Part 2: Establishing Structure–Band
Gap Energy Relationships; ACS Combinatorial Science; Vol. 18;
No. 11; 682-688; 10.1021/acscombsci.6b00054
- Shinde, A.; Li, G.; et el. (2016) The
role of the CeO_2/BiVO_4 interface in optimized Fe-Ce oxide coatings for
solar fuels photoanodes; Journal of Materials Chemistry A; Vol. 4;
No. 37; 14356-14363; 10.1039/c6ta04746g
- Shinde, Aniketa; Guevarra, Dan; et el. (2016) Discovery
of Fe–Ce Oxide/BiVO₄ Photoanodes through Combinatorial Exploration of
Ni–Fe–Co–Ce Oxide Coatings; ACS Applied Materials & Interfaces;
Vol. 8; No. 36; 23696-23705; 10.1021/acsami.6b06714
- Haber, Joel; Guevarra, Dan; et el. (2016) Development
of solar fuels photoanodes through combinatorial integration of
Ni-La-Co-Ce oxide and Ni-Fe-Co-Ce oxide catalysts on BiVO₄
- Newhouse, P. F.; Boyd, D. A.; et el. (2016) Solar
fuel photoanodes prepared by inkjet printing of copper vanadates;
Journal of Materials Chemistry A; Vol. 4; No. 19; 7483-7494; 10.1039/C6TA01252C
- Hattrick-Simpers, Jason R.; Gregoire, John M.; et el. (2016) Perspective:
Composition–structure–property mapping in high-throughput experiments:
Turning data into knowledge; APL Materials; Vol. 4; No. 5; Art.
No. 053211; 10.1063/1.4950995
- Zhou, Lan; Yan, Qimin; et el. (2016) Stability
and self-passivation of copper vanadate photoanodes under chemical,
electrochemical, and photoelectrochemical operation; Physical
Chemistry Chemical Physics; Vol. 18; No. 14; 9349-9352; 10.1039/C6CP00473C
- Guevarra, D.; Shinde, A.; et el. (2016) Development
of solar fuels photoanodes through combinatorial integration of
Ni–La–Co–Ce oxide catalysts on BiVO₄; Energy and Environmental
Science; Vol. 9; No. 2; 565-580; 10.1039/c5ee03488d
- Suram, Santosh K.; Pesenson, Meyer Z.; et el. (2015) High
Throughput Combinatorial Experimentation + Informatics = Combinatorial
Science; ISBN 978-3-319-23870-8; 271-300; 10.1007/978-3-319-23871-5_14
- Zhou, Lan; Yan, Qimin; et el. (2015) High
Throughput Discovery of Solar Fuels Photoanodes in the CuO-V_2O_5
System; Advanced Energy Materials; Vol. 5; No. 22; Art. No. 1500968;
10.1002/aenm.201500968
- Fenwick, Aidan Q.; Gregoire, John M.; et el. (2015) Electrocatalytic
Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges
and Opportunities for a Solar Fuel Device; Journal of Photochemistry
and Photobiology B: Biology; Vol. 152; 47-57; 10.1016/j.jphotobiol.2014.12.019
- Zhou, Lan; Suram, Santosh K.; et el. (2015) Combining
reactive sputtering and rapid thermal processing for synthesis and
discovery of metal oxynitrides; Journal of Materials Research; Vol.
30; No. 19; 2928-2933; 10.1557/jmr.2015.140
- Chan, Candace K.; Tüysüz, Harun; et el. (2015) Advanced
and In Situ Analytical Methods for Solar Fuel Materials; ISBN
978-3-319-23098-6; 253-324; 10.1007/128_2015_650
- Haber, Joel A.; Anzenburg, Eitan; et el. (2015) Multiphase
Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New
Direction for OER Electrocatalyst Design; Advanced Energy Materials;
Vol. 5; No. 10; Art. No. 1402307; 10.1002/aenm.201402307
- Yan, Qimin; Li, Guo; et el. (2015) Mn_2V_2O_7:
An Earth Abundant Light Absorber for Solar Water Splitting; Advanced
Energy Materials; Vol. 5; No. 8; Art. No. 1401840; 10.1002/aenm.201401840
- Suram, Santosh K.; Haber, Joel A.; et el. (2015) Generating
Information-Rich High-Throughput Experimental Materials Genomes using
Functional Clustering via Multitree Genetic Programming and Information
Theory; ACS Combinatorial Science; Vol. 17; No. 4; 224-233; 10.1021/co5001579
- McCluskey, Patrick J.; Xiao, Kechao; et el. (2015) Application
of in-situ nano-scanning calorimetry and X-ray diffraction to
characterize Ni–Ti–Hf high-temperature shape memory alloys;
Thermochimica Acta; Vol. 603; 53-62; 10.1016/j.tca.2014.07.023
- Mitrovic, Slobodan; Soedarmadji, Edwin; et el. (2015) Colorimetric
Screening for High-Throughput Discovery of Light Absorbers; ACS
Combinatorial Science; Vol. 17; No. 3; 176-181; 10.1021/co500151u
- Suram, Santosh K.; Zhou, Lan; et el. (2015) Combinatorial
thin film composition mapping using three dimensional deposition
profiles; Review of Scientific Instruments; Vol. 86; No. 3; Art.
No. 033904; 10.1063/1.4914466
- Haber, Joel; Guevarra, Dan; et el. (2015) Enabling
solar fuels technology by high throughput discovery of earth abundant
oxygen evolution reaction catalysts; Abstracts of Papers of the
American Chemical Society; Vol. 249; INOR-45
- Shinde, Aniketa; Jones, Ryan J. R.; et el. (2015) High-Throughput
Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the
(Mn–Co–Ta–Sb)O_x Composition Space; Electrocatalysis; Vol. 6; No. 2;
229-236; 10.1007/s12678-014-0237-7
- Shinde, Aniketa; Guevarra, Dan; et el. (2015) Identification
of optimal solar fuel electrocatalysts via high throughput in situ
optical measurements; Journal of Materials Research; Vol. 30; No. 3;
442-450; 10.1557/jmr.2014.296
- Jones, Ryan J. R.; Shinde, Aniketa; et el. (2015) Parallel
Electrochemical Treatment System and Application for Identifying
Acid-Stable Oxygen Evolution Electrocatalysts; ACS Combinatorial
Science; Vol. 17; No. 2; 71-75; 10.1021/co500148p
- Pesenson, Misha Z.; Suram, Santosh K.; et el. (2015) Statistical
Analysis and Interpolation of Compositional Data in Materials
Science; ACS Combinatorial Science; Vol. 17; No. 2; 130-136; 10.1021/co5001458
- Soriaga, Manuel P.; Baricuatro, Jack H.; et el. (2015) Electrochemical
surface science twenty years later: Expeditions into the
electrocatalysis of reactions at the core of artificial
photosynthesis; Surface Science; Vol. 631; 285-294; 10.1016/j.susc.2014.06.028
- Mitrovic, Slobodan; Cornell, Earl W.; et el. (2015) High-throughput
on-the-fly scanning ultraviolet-visible dual-sphere spectrometer;
Review of Scientific Instruments; Vol. 86; No. 1; Art. No. 013904; 10.1063/1.4905365
- Kim, Youn-Geun; Baricuatro, Jack Hess; et el. (2014) The
Evolution of the Polycrystalline Copper Surface, First to Cu(111) and
Then to Cu(100), at a Fixed CO_2RR Potential: A Study by Operando
EC-STM; Langmuir; Vol. 30; No. 50; 15053-15056; 10.1021/la504445g
- Gregoire, J. M.; Van Campen, D. G.; et el. (2014) High-throughput
synchrotron X-ray diffraction for combinatorial phase mapping;
Journal of Synchrotron Radiation; Vol. 21; No. 6; 1262-1268; 10.1107/S1600577514016488
- Haber, Joel A.; Guevarra, Dan; et el. (2014) Discovery
of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial
Investigation of the Ni–La–Co–Ce Oxide Composition Space;
ChemElectroChem; Vol. 1; No. 10; 1613-1617; 10.1002/celc.201402149
- Haber, Joel A.; Xiang, Chengxiang; et el. (2014) High-Throughput
Mapping of the Electrochemical Properties of (Ni-Fe-Co-Ce)O_x
Oxygen-Evolution Catalysts; ChemElectroChem; Vol. 1; No. 3; 524-528;
10.1002/celc.201300229
- Xiang, Chengxiang; Haber, Joel; et el. (2014) Mapping
Quantum Yield for (Fe−Zn−Sn−Ti)O_x Photoabsorbers Using a High
Throughput Photoelectrochemical Screening System; ACS Combinatorial
Science; Vol. 16; No. 3; 120-127; 10.1021/co400081w
- Haber, Joel A.; Jung, Suho; et el. (2014) Discovering
Ce-rich oxygen evolution catalysts, from high throughput screening to
water electrolysis
- Haber, Joel A.; Cai, Yun; et el. (2014) Discovering
Ce-rich oxygen evolution catalysts, from high throughput screening to
water electrolysis; Energy and Environmental Science; Vol. 7; No. 2;
682-688; 10.1039/C3EE43683G
- Xiang, Chengxiang; Suram, Santosh K.; et el. (2014) High-Throughput
Bubble Screening Method for Combinatorial Discovery of Electrocatalysts
for Water Splitting; ACS Combinatorial Science; Vol. 16; No. 2;
47-52; 10.1021/co400151h
- Gregoire, J. M.; Haber, J. A.; et el. (2014) Enabling
Solar Fuels Technology With High Throughput Experimentation; MRS
Proceedings; Vol. 1654; Art. No. opl.2014.29; 10.1557/opl.2014.29
- Xiao, Kechao; Gregoire, John M.; et el. (2013) Scanning
AC nanocalorimetry combined with in-situ x-ray diffraction; Journal
of Applied Physics; Vol. 113; No. 24; Art. No. 243501; PMCID PMC3676369;
10.1063/1.4811686
- Gregoire, J. M.; Xiang, C.; et el. (2013) Combined
Catalysis and Optical Screening for High Throughput Discovery of Solar
Fuels Catalysts; ECS Transactions; Vol. 50; No. 49; 9-20; 10.1149/05049.0009ecst
- Duan, H.; Yuan, C. C.; et el. (2013) High-Throughput
Measurement of Ionic Conductivity in Composition-Spread Thin Films;
ACS Combinatorial Science; Vol. 15; No. 6; 273-277; 10.1021/co4000375
- Gregoire, John M.; Xiao, Kechao; et el. (2013) In-situ
X-ray diffraction combined with scanning AC nanocalorimetry applied to a
Fe_(0.84)Ni_(0.16) thin-film sample; Applied Physics Letters; Vol.
102; No. 20; Art. No. 201902; PMCID PMC3676369; 10.1063/1.4806972
- Gregoire, John M.; Xiang, Chengxiang; et el. (2013) Scanning
droplet cell for high throughput electrochemical and
photoelectrochemical measurements; Review of Scientific Instruments;
Vol. 84; No. 2; Art. No. 024102; 10.1063/1.4790419
- Gregoire, J. M.; Xiang, C.; et el. (2013) Combined
Catalysis and Optical Screening for High Throughput Discovery of Solar
Fuels Catalysts; Journal of the Electrochemical Society; Vol. 160;
No. 4; F337-F342; 10.1149/2.035304jes
- Xiao, Kechao; Gregoire, John M.; et el. (2012) A
scanning AC calorimetry technique for the analysis of nano-scale
quantities of materials; Review of Scientific Instruments; Vol. 83;
No. 11; Art. No. 114901; 10.1063/1.4763571
- Gregoire, John M.; Dale, Darren; et el. (2011) A
wavelet transform algorithm for peak detection and application to powder
x-ray diffraction data; Review of Scientific Instruments; Vol. 82;
No. 1; Art. No. 015105; 10.1063/1.3505103
- Gregoire, John M.; Dale, Darren; et el. (2010) Cosputtered
composition-spread reproducibility established by high-throughput x-ray
fluorescence; Journal of Vacuum Science and Technology A; Vol. 28;
No. 5; 1279-1280; PMCID PMC4043122; 10.1116/1.3478668
- Roncallo, Scilla; Karimi, Omeed; et el. (2010) High
Throughput X-ray Diffraction Analysis of Combinatorial Polycrystalline
Thin Film Libraries; Analytical Chemistry; Vol. 82; No. 11;
4564-4569; 10.1021/ac100572h
- Gregoire, John M.; Dale, Darren; et el. (2009) High
energy x-ray diffraction/x-ray fluorescence spectroscopy for
high-throughput analysis of composition spread thin films; Review of
Scientific Instruments; Vol. 80; No. 12; Art. No. 123905; 10.1063/1.3274179
- Gregoire, John M.; van Dover, R. B.; et el. (2007) Getter
sputtering system for high-throughput fabrication of composition
spreads; Review of Scientific Instruments; Vol. 78; No. 7; Art.
No. 072212; 10.1063/1.2755967