Abstract: A locally testable code is an error-correcting code that admits very efficient probabilistic tests of membership. Tensor codes provide a simple family of combinatorial constructions of locally testable codes that generalize the family of Reed-Muller codes. The natural test for tensor codes, the axis-parallel line vs. point test, plays an essential role in constructions of probabilistically checkable proofs. We analyze the axis-parallel line vs. point test as a two-prover game and show that the test is sound against quantum provers sharing entanglement. Our result implies the quantum-soundness of the low individual degree test, which is an essential component of the MIP* = RE theorem. Our proof also generalizes to the infinite-dimensional commuting-operator model of quantum provers.

Publication: arXiv
ID: CaltechAUTHORS:20220202-191902193

]]>

Abstract: For all n ≥ 1, we give an explicit construction of m × m matrices A_1,…,A_n with m = 2^([n/2]) such that for any d and d × d matrices A′_1,…,A′_n that satisfy ∥A_′i−A′_j∥S_1 ≤ ∥A_i−A_j∥S_1 ≤ (1+δ)∥A′_i−A′_j∥S_1 for all i,j∈{1,…,n} and small enough δ = O(n^(−c)), where c > 0 is a universal constant, it must be the case that d ≥ 2^([n/2]−1). This stands in contrast to the metric theory of commutative ℓ_p spaces, as it is known that for any p ≥ 1, any n points in ℓ_p embed exactly in ℓ^d_p for d = n(n−1)/2. Our proof is based on matrices derived from a representation of the Clifford algebra generated by n anti-commuting Hermitian matrices that square to identity, and borrows ideas from the analysis of nonlocal games in quantum information theory.

No.: 2266
ID: CaltechAUTHORS:20190320-095834301

]]>

Abstract: A proof of quantumness is a method for provably demonstrating (to a classical verifier) that a quantum device can perform computational tasks that a classical device with comparable resources cannot. Providing a proof of quantumness is the first step towards constructing a useful quantum computer. There are currently three approaches for exhibiting proofs of quantumness: (i) Inverting a classically-hard one-way function (e.g. using Shor’s algorithm). This seems technologically out of reach. (ii) Sampling from a classically-hard-to-sample distribution (e.g. BosonSampling). This may be within reach of near-term experiments, but for all such tasks known verification requires exponential time. (iii) Interactive protocols based on cryptographic assumptions. The use of a trapdoor scheme allows for efficient verification, and implementation seems to require much less resources than (i), yet still more than (ii). In this work we propose a significant simplification to approach (iii) by employing the random oracle heuristic. (We note that we do not apply the Fiat-Shamir paradigm.) We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-free function. In contrast to earlier proposals we do not need an adaptive hard-core bit property. This allows the use of smaller security parameters and more diverse computational assumptions (such as Ring Learning with Errors), significantly reducing the quantum computational effort required for a successful demonstration.

Publication: arXiv
ID: CaltechAUTHORS:20200728-144326318

]]>

Abstract: We introduce a protocol between a classical polynomial-time verifier and a quantum polynomial-time prover that allows the verifier to securely delegate to the prover the preparation of certain single-qubit quantum states The prover is unaware of which state he received and moreover, the verifier can check with high confidence whether the preparation was successful. The delegated preparation of single-qubit states is an elementary building block in many quantum cryptographic protocols. We expect our implementation of "random remote state preparation with verification", a functionality first defined in (Dunjko and Kashefi 2014), to be useful for removing the need for quantum communication in such protocols while keeping functionality. The main application that we detail is to a protocol for blind and verifiable delegated quantum computation (DQC) that builds on the work of (Fitzsimons and Kashefi 2018), who provided such a protocol with quantum communication. Recently, both blind an verifiable DQC were shown to be possible, under computational assumptions, with a classical polynomial-time client (Mahadev 2017, Mahadev 2018). Compared to the work of Mahadev, our protocol is more modular, applies to the measurement-based model of computation (instead of the Hamiltonian model) and is composable. Our proof of security builds on ideas introduced in (Brakerski et al. 2018).

ID: CaltechAUTHORS:20200109-143243905

]]>

Abstract: We show that any language solvable in nondeterministic time exp( exp(⋯exp(n))), where the number of iterated exponentials is an arbitrary function R(n), can be decided by a multiprover interactive proof system with a classical polynomial-time verifier and a constant number of quantum entangled provers, with completeness 1 and soundness 1 − exp(−Cexp(⋯exp(n))), where the number of iterated exponentials is R(n)−1 and C>0 is a universal constant. The result was previously known for R=1 and R=2; we obtain it for any time-constructible function R. The result is based on a compression technique for interactive proof systems with entangled provers that significantly simplifies and strengthens a protocol compression result of Ji (STOC’17). As a separate consequence of this technique we obtain a different proof of Slofstra’s recent result on the uncomputability of the entangled value of multiprover games (Forum of Mathematics, Pi 2019). Finally, we show that even minor improvements to our compression result would yield remarkable consequences in computational complexity theory and the foundations of quantum mechanics: first, it would imply that the class MIP* contains all computable languages; second, it would provide a negative resolution to a multipartite version of Tsirelson’s problem on the relation between the commuting operator and tensor product models for quantum correlations.

Publication: arXiv
ID: CaltechAUTHORS:20190204-112657116

]]>

Abstract: In privacy amplification, two mutually trusted parties aim to amplify the secrecy of an initial shared secret X in order to establish a shared private key K by exchanging messages over an insecure communication channel. If the channel is authenticated the task can be solved in a single round of communication using a strong randomness extractor; choosing a quantum-proof extractor allows one to establish security against quantum adversaries. In the case that the channel is not authenticated, this simple solution is no longer secure. Nevertheless, Dodis and Wichs (STOC’09) showed that the problem can be solved in two rounds of communication using a non-malleable extractor, a stronger pseudo-random construction than a strong extractor. We give the first construction of a non-malleable extractor that is secure against quantum adversaries. The extractor is based on a construction by Li (FOCS’12), and is able to extract from source of min-entropy rates larger than 1 / 2. Combining this construction with a quantum-proof variant of the reduction of Dodis and Wichs, due to Cohen and Vidick (unpublished) we obtain the first privacy amplification protocol secure against active quantum adversaries.

Publication: arXiv No.: 11477
ID: CaltechAUTHORS:20190320-102401828

]]>

Abstract: The problem of reliably certifying the outcome of a computation performed by a quantum device is rapidly gaining relevance. We present two protocols for a classical verifier to verifiably delegate a quantum computation to two non-communicating but entangled quantum provers. Our protocols have near-optimal complexity in terms of the total resources employed by the verifier and the honest provers, with the total number of operations of each party, including the number of entangled pairs of qubits required of the honest provers, scaling as O(g\log g) for delegating a circuit of size g. This is in contrast to previous protocols, whose overhead in terms of resources employed, while polynomial, is far beyond what is feasible in practice. Our first protocol requires a number of rounds that is linear in the depth of the circuit being delegated, and is blind, meaning neither prover can learn the circuit or its input. The second protocol is not blind, but requires only a constant number of rounds of interaction. Our main technical innovation is an efficient rigidity theorem which allows a verifier to test that two entangled provers perform measurements specified by an arbitrary m-qubit tensor product of single-qubit Clifford observables on their respective halves of m shared EPR pairs, with a robustness that is independent of m. Our two-prover classical-verifier delegation protocols are obtained by combining this rigidity theorem with a single-prover quantum-verifier protocol for the verifiable delegation of a quantum computation, introduced by Broadbent.

Publication: arXiv No.: 11478
ID: CaltechAUTHORS:20190320-123759874

]]>

Abstract: We give a protocol for producing certifiable randomness from a single untrusted quantum device that is polynomial-time bounded. The randomness is certified to be statistically close to uniform from the point of view of any computationally unbounded quantum adversary, that may share entanglement with the quantum device. The protocol relies on the existence of post-quantum secure trapdoor claw-free functions, and introduces a new primitive for constraining the power of an untrusted quantum device. We then show how to construct this primitive based on the hardness of the learning with errors (LWE) problem. The randomness protocol can also be used as the basis for an efficiently verifiable "quantum supremacy" proposal, thus answering an outstanding challenge in the field.

ID: CaltechAUTHORS:20190201-143229032

]]>

Abstract: We show that given an explicit description of a multiplayer game, with a classical verifier and a constant number of players, it is QMA-hard, under randomized reductions, to distinguish between the cases when the players have a strategy using entanglement that succeeds with probability 1 in the game, or when no such strategy succeeds with probability larger than 1/2. This proves the “games quantum PCP conjecture” of Fitzsimons and the second author (ITCS'15), albeit under randomized reductions. The core component in our reduction is a construction of a family of two-player games for testing n-qubit maximally entangled states. For any integer n ≥ 2, we give such a game in which questions from the verifier are O(log n) bits long, and answers are poly(loglogn) bits long. We show that for any constant ε ≥ 0, any strategy that succeeds with probability at least 1 - ε in the test must use a state that is within distance δ(ε) = O(ε c ) from a state that is locally equivalent to a maximally entangled state on n qubits, for some universal constant c > 0. The construction is based on the classical plane-vs-point test for multivariate low-degree polynomials of Raz and Safra (STOC'97). We extend the classical test to the quantum regime by executing independent copies of the test in the generalized Pauli X and Z bases over Fq, where q is a sufficiently large prime power, and combine the two through a test for the Pauli twisted commutation relations. Our main complexity-theoretic result is obtained by combining this family of games with techniques from the classical PCP literature. More specifically, we use constructions of PCPs of proximity introduced by Ben-Sasson et al. (CCC'05), and crucially rely on a linear property of such PCPs. Another consequence of our results is a deterministic reduction from the games quantum PCP conjecture to a suitable formulation of the constraint satisfaction quantum PCP conjecture.

ID: CaltechAUTHORS:20190201-143229217

]]>

Abstract: We show that it is NP-hard to approximate, to within an additive constant, the maximum success probability of players sharing quantum entanglement in a two-player game with classical questions of logarithmic length and classical answers of constant length. As a corollary, the inclusion NEXP subseteq MIP^*, first shown by Ito and Vidick (FOCS'12) with three provers, holds with two provers only. The proof is based on a simpler, improved analysis of the low-degree test of Raz and Safra (STOC'97) against two entangled provers.

Publication: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany
ID: CaltechAUTHORS:20180822-141142977

]]>

Abstract: In a recent work, Moshkovitz [FOCS'14] presented a transformation n two-player games called "fortification", and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an analytic reformulation of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show any game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, which has recently received much interest. An important component of our work is a variant of the fortification transformation, called "ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting.

No.: 67
ID: CaltechAUTHORS:20160321-071142064

]]>

Abstract: One of the central challenges in the study of quantum many-body systems is the complexity of simulating them on a classical computer. A recent advance by Landau et al. gave a polynomial time algorithm to compute a succinct classical description for unique ground states of gapped 1D quantum systems. Despite this progress many questions remained unresolved, including whether there exist rigorous efficient algorithms when the ground space is degenerate (and poly(n) dimensional), or for the poly(n) lowest energy states for 1D systems, or even whether such states admit succinct classical descriptions or area laws. In this paper we give a new algorithm for finding low energy states for 1D systems, based on a rigorously justified renormalization group (RG)-type transformation. In the process we resolve some of the aforementioned open questions, including giving a polynomial time algorithm for poly(n) degenerate ground spaces and an n^(O(log n)) algorithm for the poly(n) lowest energy states for 1D systems (under a mild density condition). We note that for these classes of systems the existence of a succinct classical description and area laws were not rigorously proved before this work. The algorithms are natural and efficient, and for the case of finding unique ground states for frustration-free Hamiltonians the running time is O(nM(n)), where M(n) is the time required to multiply two n by n matrices.

Publication: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany
ID: CaltechAUTHORS:20200804-100730896

]]>

Abstract: We introduce a simple two-player test which certifies that the players apply tensor products of Pauli σ_X and σ_Z observables on the tensor product of n EPR pairs. The test has constant robustness: any strategy achieving success probability within an additive of the optimal must be poly(ε)-close, in the appropriate distance measure, to the honest n-qubit strategy. The test involves 2n-bit questions and 2-bit answers. The key technical ingredient is a quantum version of the classical linearity test of Blum, Luby, and Rubinfeld. As applications of our result we give (i) the first robust self-test for n EPR pairs; (ii) a quantum multiprover interactive proof system for the local Hamiltonian problem with a constant number of provers and classical questions and answers, and a constant completeness-soundness gap independent of system size; (iii) a robust protocol for verifiable delegated quantum computation with a constant number of quantum polynomial-time provers sharing entanglement.

ID: CaltechAUTHORS:20170710-154654821

]]>

Abstract: We study the parallel repetition of one-round games involving players that can use quantum entanglement. A major open question in this area is whether parallel repetition reduces the entangled value of a game at an exponential rate - in other words, does an analogue of Raz's parallel repetition theorem hold for games with players sharing quantum entanglement? Previous results only apply to special classes of games. We introduce a class of games we call anchored. We then introduce a simple transformation on games called anchoring, inspired in part by the Feige-Kilian transformation, that turns any (multiplayer) game into an anchored game. Unlike the Feige-Kilian transformation, our anchoring transformation is completeness preserving. We prove an exponential-decay parallel repetition theorem for anchored games that involve any number of entangled players. We also prove a threshold version of our parallel repetition theorem for anchored games. Together, our parallel repetition theorems and anchoring transformation provide the first hardness amplification techniques for general entangled games. We give an application to the games version of the Quantum PCP Conjecture.

ID: CaltechAUTHORS:20170710-152910604

]]>

Abstract: An ideal system of n qubits has 2^n dimensions. This exponential grants power, but also hinders characterizing the system's state and dynamics. We study a new problem: the qubits in a physical system might not be independent. They can "overlap," in the sense that an operation on one qubit slightly affects the others. We show that allowing for slight overlaps, n qubits can fit in just polynomially many dimensions. (Defined in a natural way, all pairwise overlaps can be ≤ ϵ in n^(O(1/ϵ^2)) dimensions.) Thus, even before considering issues like noise, a real system of n qubits might inherently lack any potential for exponential power. On the other hand, we also provide an efficient test to certify exponential dimensionality. Unfortunately, the test is sensitive to noise. It is important to devise more robust tests on the arrangements of qubits in quantum devices.

Publication: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017) No.: 67
ID: CaltechAUTHORS:20171011-113818136

]]>

Abstract: Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class NP, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class QSZK, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.

Publication: Foundations and Trends in Theoretical Computer Science Vol.: 11 No.: 1-2
ID: CaltechAUTHORS:20160622-144016671

]]>

Abstract: The class MIP∗ of promise problems that can be decided through an interactive proof system with multiple entangled provers provides a complexity-theoretic framework for the exploration of the nonlocal properties of entanglement. Very little is known in terms of the power of this class. The only proposed approach for establishing upper bounds is based on a hierarchy of semidefinite programs introduced independently by Pironio et al. and Doherty et al. in 2006. This hierarchy converges to a value, the field-theoretic value, that is only known to coincide with the provers’ maximum success probability in a given proof system under a plausible but difficult mathematical conjecture, Connes’ embedding conjecture. No bounds on the rate of convergence are known. We introduce a rounding scheme for the hierarchy, establishing that any solution to its N -th level can be mapped to a strategy for the provers in which measurement operators associated with distinct provers have pairwise commutator bounded by O(ℓ^2/√N) in operator norm, where ℓ is the number of possible answers per prover. Our rounding scheme motivates the introduction of a variant of quantum multiprover interactive proof systems, called MIP∗_δ in which the soundness property is required to hold against provers allowed to operate on the same Hilbert space as long as the commutator of operations performed by distinct provers has norm at most δ. Our rounding scheme implies the upper bound MIP∗_δ ⊆ DTIME(exp(exp(poly)/δ^2)). In terms of lower bounds we establish that MIP∗_(2−poly) contains NEXP with completeness 1 and soundness 1−2^(−poly). We discuss connections with the mathematical literature on approximate commutation and applications to device-independent cryptography.

No.: 9134
ID: CaltechAUTHORS:20151207-141218015

]]>

Abstract: We give a quantum interactive proof system for the local Hamiltonian problem on n qubits in which (i) the verifier has a single round of interaction with five entangled provers, (ii) the verifier sends a classical message on O(log n) bits to each prover, who replies with a constant number of qubits, and (iii) completeness and soundness are separated by an inverse polynomial in $n$. As the same class of proof systems, without entanglement between the provers, is included in QCMA, our result provides the first indication that quantum multiprover interactive proof systems with entangled provers may be strictly more powerful than unentangled-prover interactive proof systems. A distinguishing feature of our protocol is that the completeness property requires honest provers to share a large entangled state, obtained as the encoding of the ground state of the local Hamiltonian via an error-correcting code. Our result can be interpreted as a first step towards a multiprover variant of the quantum PCP conjecture.

ID: CaltechAUTHORS:20150218-115725417

]]>

Abstract: We study the behavior of the entangled value of two-player one-round projection games under parallel repetition. We show that for any projection game G of entangled value 1 - ε <; 1, the value of the k-fold repetition of G goes to zero as O((1 - ε^c)^k), for some universal constant c ≥ 1. Previously parallel repetition with an exponential decay in k was only known for the case of XOR and unique games. To prove the theorem we extend an analytical framework recently introduced by Dinur and Steurer for the study of the classical value of projection games under parallel repetition. Our proof, as theirs, relies on the introduction of a simple relaxation of the entangled value that is perfectly multiplicative. The main technical component of the proof consists in showing that the relaxed value remains tightly connected to the entangled value, thereby establishing the parallel repetition theorem. More generally, we obtain results on the behavior of the entangled value under products of arbitrary (not necessarily identical) projection games. Relating our relaxed value to the entangled value is done by giving an algorithm for converting a relaxed variant of quantum strategies that we call “vector quantum strategy” to a quantum strategy. The algorithm is considerably simpler in case the bipartite distribution of questions in the game has good expansion properties. When this is not the case, rounding relies on a quantum analogue of Holenstein's correlated sampling lemma which may be of independent interest. Our “quantum correlated sampling lemma” generalizes results of van Dam and Hayden on universal embezzlement to the following approximate scenario: two isolated parties, given classical descriptions of arbitrary bipartite states |ψ〉, |φ〉 respectively such that |ψ〉 ≈ |φ〉, are able to locally generate a joint entangled state|- Ψ〉 ≈ |ψ〉 ≈ |φ〉 using an initial entangled state that is independent of their inputs.

ID: CaltechAUTHORS:20140910-132001940

]]>

Abstract: Computing ground states of local Hamiltonians is a fundamental problem in condensed matter physics. The problem is known to be QMA-complete, even for one-dimensional Hamiltonians. This means that we do not even expect that there is a sub-exponential size description of the ground state that allows efficient computation of local observables such as the energy. In sharp contrast, the heuristic density matrix renormalization group (DMRG) algorithm invented two decades ago has been remarkably successful in practice on one-dimensional problems. The situation is reminiscent of the unexplained success of the simplex algorithm before the advent of ellipsoid and interior-point methods. Is there a principled explanation for this, in the form of a large class of one-dimensional Hamiltonians whose ground states can be provably efficiently approximated? Here we give such an algorithm for gapped one-dimensional Hamiltonians: our algorithm outputs an (inverse-polynomial) approximation to the ground state, expressed as a matrix product state (MPS) of polynomial bond dimension. The running time of the algorithm is polynomial in the number of qudits n and the approximation quality δ, for a fixed local dimension d and gap Δ > 0. A key ingredient of our algorithm is a new construction of an operator called an approximate ground state projector (AGSP), a concept first introduced in to derive an improved area law for gapped one-dimensional systems. For this purpose the AGSP has to be efficiently constructed; the particular AGSP we construct relies on matrix-valued Chernoff bounds. Other ingredients of the algorithm include the use of convex programming, recently discovered structural features of gapped 1D quantum systems, and new techniques for manipulating and bounding the complexity of matrix product states.

ID: CaltechAUTHORS:20140909-142344205

]]>

Abstract: Quantum cryptography is based on the discovery that the laws of quantum mechanics allow levels of security that are impossible to replicate in a classical world. Can such levels of security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This fundamental question in quantum cryptography dates back to the early nineties when the challenge of achieving device independent quantum key distribution, or DIQKD, was first formulated. We answer this challenge affirmatively by exhibiting a robust protocol for DIQKD and rigorously proving its security. The protocol achieves a linear key rate while tolerating a constant noise rate in the devices. The security proof assumes only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and any adversary's laboratory. In particular, we emphasize that the devices may have quantum memory. All previous proofs of security relied either on the use of many independent pairs of devices, or on the absence of noise. To prove security for a DIQKD protocol it is necessary to establish at least that the generated key is truly random even in the presence of a quantum adversary. This is already a challenge, one that was recently resolved. DIQKD is substantially harder, since now the protocol must also guarantee that the key is completely secret from the quantum adversary's point of view, and the entire protocol is robust against noise; this in spite of the substantial amounts of classical information leaked to the adversary throughout the protocol, as part of the error estimation and information reconciliation procedures. Our proof of security builds upon a number of techniques, including randomness extractors that are secure against quantum storage as well as ideas originating in the coding strategy used in the proof of the Holevo-Schumacher-Westmoreland theorem which we apply to bound correlations across multiple rounds in a way not unrelated to information-theoretic proofs of the parallel repetition property for multiplayer games. Our main result can be understood as a new bound on monogamy of entanglement in the type of complex scenario that arises in a key distribution protocol.

ID: CaltechAUTHORS:20140909-145320191

]]>

Abstract: Quantum entanglement is known to provide a strong advantage in many two-party distributed tasks. We investigate the question of how much entanglement is needed to reach optimal performance. For the first time we show that there exists a purely classical scenario for which no finite amount of entanglement suffices. To this end we introduce a simple two-party nonlocal game H, inspired by a paradox of Lucien Hardy. In our game each player has only two possible questions and can provide answers in a countable set. We exhibit a sequence of strategies which use entangled states in increasing dimension d and succeed with probability 1 − O(d^(−c)) for some c ≥ 0.13. On the other hand, we show that any strategy using an entangled state of local dimension d has success probability at most 1 − Ω(d⁻²). In addition, we show that any strategy restricted to producing answers in a set of cardinality at most d has success probability at most 1 − Ω(d⁻²).

Publication: Lecture Notes in Computer Science No.: 8572 ISSN: 0302-9743

ID: CaltechAUTHORS:20200805-153500961

]]>

Abstract: We show that for any ε > 0 the problem of finding a factor (2 - ε) approximation to the entangled value of a three-player XOR game is NP-hard. Equivalently, the problem of approximating the largest possible quantum violation of a tripartite Bell correlation inequality to within any multiplicative constant is NP-hard. These results are the first constant-factor hardness of approximation results for entangled games or quantum violations of Bell inequalities shown under the sole assumption that P≠NP. They can be thought of as an extension of Hástad's optimal hardness of approximation results for MAX-E3-LIN2 (JACM'01) to the entangled-player setting. The key technical component of our work is a soundness analysis of a point-vs-plane low-degree test against entangled players. This extends and simplifies the analysis of the multilinearity test by Ito and Vidick (FOCS'12). Our results demonstrate the possibility for efficient reductions between entangled-player games and our techniques may lead to further hardness of approximation results.

ID: CaltechAUTHORS:20140910-100149541

]]>

Abstract: The classical Grothendieck inequality has applications to the design of approximation algorithms for NP-hard optimization problems. We show that an algorithmic interpretation may also be given for a noncommutative generalization of the Grothendieck inequality due to Pisier and Haagerup. Our main result, an efficient rounding procedure for this inequality, leads to a constant-factor polynomial time approximation algorithm for an optimization problem which generalizes the Cut Norm problem of Frieze and Kannan, and is shown here to have additional applications to robust principle component analysis and the orthogonal Procrustes problem.

ID: CaltechAUTHORS:20140910-115031387

]]>

Abstract: We introduce quantum XOR games, a model of two-player one-round games that extends the model of XOR games by allowing the referee's questions to the players to be quantum states. We give examples showing that quantum XOR games exhibit a wide range of behaviors that are known not to exist for standard XOR games, such as cases in which the use of entanglement leads to an arbitrarily large advantage over the use of no entanglement. By invoking two deep extensions of Grothendieck's inequality, we present an efficient algorithm that gives a constant-factor approximation to the best performance players can obtain in a given game, both in case they have no shared entanglement and in case they share unlimited entanglement. As a byproduct of the algorithm we prove some additional interesting properties of quantum XOR games, such as the fact that sharing a maximally entangled state of arbitrary dimension gives only a small advantage over having no entanglement at all.

ID: CaltechAUTHORS:20160329-155246836

]]>

Abstract: We present an analysis of Wiesner’s quantum money scheme, as well as some natural generalizations of it, based on semidefinite programming. For Wiesner’s original scheme, it is determined that the optimal probability for a counterfeiter to create two copies of a bank note from one, where both copies pass the bank’s test for validity, is (3/4)^n for n being the number of qubits used for each note. Generalizations in which other ensembles of states are substituted for the one considered by Wiesner are also discussed, including a scheme recently proposed by Pastawski, Yao, Jiang, Lukin, and Cirac, as well as schemes based on higher dimensional quantum systems. In addition, we introduce a variant of Wiesner’s quantum money in which the verification protocol for bank notes involves only classical communication with the bank. We show that the optimal probability with which a counterfeiter can succeed in two independent verification attempts, given access to a single valid n-qubit bank note, is (3/4+√2/8)^n. We also analyze extensions of this variant to higher-dimensional schemes.

No.: 7582
ID: CaltechAUTHORS:20160318-155200133

]]>

Abstract: A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. Finally, we show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date.

No.: 8096
ID: CaltechAUTHORS:20160318-153752227

]]>

Abstract: We prove a strong limitation on the ability of entangled provers to collude in a multiplayer game. Our main result is the first nontrivial lower bound on the class MIP* of languages having multi-prover interactive proofs with entangled provers, namely MIP* contains NEXP, the class of languages decidable in non-deterministic exponential time. While Babai, Fort now, and Lund (Computational Complexity 1991) proved the celebrated equality MIP = NEXP in the absence of entanglement, ever since the introduction of the class MIP* it was open whether shared entanglement between the provers could weaken or strengthen the computational power of multi-prover interactive proofs. Our result shows that it does not weaken their computational power: MIP* contains MIP. At the heart of our result is a proof that Babai, Fort now, and Lund's multilinearity test is sound even in the presence of entanglement between the provers, and our analysis of this test could be of independent interest. As a byproduct we show that the correlations produced by any entangled strategy which succeeds in the multilinearity test with high probability can always be closely approximated using shared randomness alone.

ID: CaltechAUTHORS:20140910-100733064

]]>

Abstract: We introduce a protocol through which a pair of quantum mechanical devices may be used to generate n bits that are ε-close in statistical distance from n uniformly distributed bits, starting from a seed of O(log n log 1/ε) uniform bits. The bits generated are certifiably random based only on a simple statistical test that can be performed by the user, and on the assumption that the devices do not communicate in the middle of each phase of the protocol. No other assumptions are placed on the devices' inner workings. A modified protocol uses a seed of O(log^3 n) uniformly random bits to generate n bits that are poly^(-1)(n)-indistinguishable from uniform even from the point of view of a quantum adversary who may have had prior access to the devices, and may be entangled with them.

ID: CaltechAUTHORS:20140910-141425231

]]>

Abstract: We consider one-round games between a classical referee and two players. One of the main questions in this area is the parallel repetition question: Is there a way to decrease the maximum winning probability of a game without increasing the number of rounds or the number of players? Classically, efforts to resolve this question, open for many years, have culminated in Raz’s celebrated parallel repetition theorem on one hand, and in efficient product testers for PCPs on the other. In the case where players share entanglement, the only previously known results are for special cases of games, and are based on techniques that seem inherently limited. Here we show for the first time that the maximum success probability of entangled games can be reduced through parallel repetition, provided it was not initially 1. Our proof is inspired by a seminal result of Feige and Kilian in the context of classical two-prover one-round interactive proofs. One of the main components in our proof is an orthogonalization lemma for operators, which might be of independent interest.

ID: CaltechAUTHORS:20140910-135518364

]]>

Abstract: We show that Trevisan's extractor and its variants] are secure against bounded quantum storage adversaries. One instantiation gives the first such extractor to achieve an output length Θ(K-b), where K is the source's entropy and b the adversary's storage, together with a poly-logarithmic seed length. Another instantiation achieves a logarithmic key length, with a slightly smaller output length Θ((K-b)/K^γ) for any γ>0. In contrast, the previous best construction could only extract (K/b)^(1/15) bits. Some of our constructions have the additional advantage that every bit of the output is a function of only a polylogarithmic number of bits from the source, which is crucial for some cryptographic applications. Our argument is based on bounds for a generalization of quantum random access codes, which we call quantum functional access codes. This is crucial as it lets us avoid the local list-decoding algorithm central to the approach in, which was the source of the multiplicative overhead.

ID: CaltechAUTHORS:20140910-145258006

]]>

Abstract: The idea to put computing machines on a physical footing and to use the laws of physics as the basis of a computer already dates back several decades. In the 1980s, Feynman [24,25] was the first to consider quantum mechanics from a computational point of view by observing that the simulation of quantum mechanical systems on a classical computer seemed to require an increase in complexity exponential in the size of the system. He asked whether this exponential overhead was inevitable, and if it was possible to design a universal quantum computer, which could simulate any quantum system without the exponential overhead. In 1985 Deutsch [17] defined the model of the quantum Turing machine, generalizing the classical Turing machine to follow the laws of quantum mechanics. Yao later showed that it was equivalent to the quantum circuit model, also defined by Deutsch.

Publication: Lecture Notes in Physics No.: 808 ISSN: 0075-8450

ID: CaltechAUTHORS:20200804-153453452

]]>

Abstract: Gap Hamming Distance is a well-studied problem in communication complexity, in which Alice and Bob have to decide whether the Hamming distance between their respective n-bit inputs is less than n/2 - √n or greater than n/2 + √n. We show that every k-round bounded-error communication protocol for this problem sends a message of at least Ω(n/(k²logk)) bits. This lower bound has an exponentially better dependence on the number of rounds than the previous best bound, due to Brody and Chakrabarti. Our communication lower bound implies strong space lower bounds on algorithms for a number of data stream computations, such as approximating the number of distinct elements in a stream.

Publication: arXiv No.: 6302
ID: CaltechAUTHORS:20190320-105826650

]]>

Abstract: We establish the first hardness results for the problem of computing the value of one-round games played by a referee and a team of players who can share quantum entanglement. In particular, we show that it is NP-hard to approximate within an inverse polynomial the value of a one-round game with (i) quantum referee and two entangled players or (ii) classical referee and three entangled players. Previously it was not even known if computing the value exactly is NP-hard. We also describe a mathematical conjecture, which, if true, would imply hardness of approximation to within a constant.We start our proof by describing two ways to modify classical multi-player games to make them resistant to entangled players. We then show that a strategy for the modified game that uses entanglement can be "rounded'' to one that does not. The results then follow from classical inapproximability bounds. Our work implies that, unless P = NP, the values of entangled-player games cannot be computed by semidefinite programs that are polynomial in the size of the referee's system, a method that has been successful for more restricted quantum games.

ID: CaltechAUTHORS:20140910-085511133

]]>

Abstract: The central question in quantum multi-prover interactive proof systems is whether or not entanglement shared among provers affects the verification power of the proof system. We study for the first time positive aspects of prior entanglement and show how it can be used to parallelize any multi- prover quantum interactive proof system to a one-round system with perfect completeness, soundness bounded away from 1 by an inverse polynomial in the input size, and one extra proven Alternatively, we can also parallelize to a three-turn system with the same number of provers, where the verifier only broadcasts the outcome of a coin flip. This "public-coin" property is somewhat surprising, since in the classical case public-coin multi-prover interactive proofs are equivalent to single prover ones.

ID: CaltechAUTHORS:20140910-083116800

]]>