<h1>Varshavsky, Alexander</h1> <h2>Article from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Varshavsky, Alexander (2024) <a href="https://authors.library.caltech.edu/records/7sxh5-9ty59">N-degron pathways</a>; Proceedings of the National Academy of Sciences; Vol. 121; No. 39; e2408697121; <a href="https://doi.org/10.1073/pnas.2408697121">10.1073/pnas.2408697121</a></li> <li>Varshavsky, Alexander and Lewis, Kim, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230530-441768000.69">Deletions of DNA in cancer and their possible uses for therapy</a>; Bioessays; Vol. 45; No. 7; e2300051; PMCID PMC11102808; <a href="https://doi.org/10.1002/bies.202300051">10.1002/bies.202300051</a></li> <li>Varshavsky, Alexander and Finley, Daniel, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230518-332288000.5">Dieter Wolf (1941–2023): a life dedicated to understanding protein quality control and the ubiquitin‐proteasome system</a>; EMBO Journal; Vol. 42; No. 11; Art. No. e114222; <a href="https://doi.org/10.15252/embj.2023114222">10.15252/embj.2023114222</a></li> <li>Kim, Bong Heon and Kim, Min Kyung, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220726-998191000">Crystal structure of the Ate1 arginyl-tRNA-protein transferase and arginylation of N-degron substrates</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 119; No. 31; Art. No. e2209597119; PMCID PMC9351520; <a href="https://doi.org/10.1073/pnas.2209597119">10.1073/pnas.2209597119</a></li> <li>Chen, Shun-Jia and Kim, Leehyeon, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211019-154957670">Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 118; No. 43; Art. No. e2115430118; PMCID PMC8639330; <a href="https://doi.org/10.1073/pnas.2115430118">10.1073/pnas.2115430118</a></li> <li>Vu, Tri T. M. and Mitchell, Dylan C., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201124-103211964">The Arg/N-degron pathway targets transcription factors and regulates specific genes</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 117; No. 49; 31094-31104; PMCID PMC7733807; <a href="https://doi.org/10.1073/pnas.2020124117">10.1073/pnas.2020124117</a></li> <li>Vu, Tri T. M. and Varshavsky, Alexander (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200721-100007126">The ATF3 Transcription Factor Is a Short-Lived Substrate of the Arg/N-Degron Pathway</a>; Biochemistry; Vol. 59; No. 30; 2796-2812; PMCID PMC7669821; <a href="https://doi.org/10.1021/acs.biochem.0c00514">10.1021/acs.biochem.0c00514</a></li> <li>Dong, Cheng and Chen, Shun-Jia, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200609-091521870">Recognition of nonproline N-terminal residues by the Pro/N-degron pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 117; No. 25; 14158-14167; PMCID PMC7322002; <a href="https://doi.org/10.1073/pnas.2007085117">10.1073/pnas.2007085117</a></li> <li>Oh, Jang-Hyun and Hyun, Ju-Yeon, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200505-133829988">Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 117; No. 20; 10778-10788; PMCID PMC7245096; <a href="https://doi.org/10.1073/pnas.2003043117">10.1073/pnas.2003043117</a></li> <li>Chen, Shun-Jia and Melnykov, Artem, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200103-103302869">Evolution of Substrates and Components of the Pro/N-Degron Pathway</a>; Biochemistry; Vol. 59; No. 4; 582-593; PMCID PMC7286083; <a href="https://doi.org/10.1021/acs.biochem.9b00953">10.1021/acs.biochem.9b00953</a></li> <li>Melnykov, Artem and Chen, Shun-Jia, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190725-112336927">Gid10 as an alternative N-recognin of the Pro/N-degron pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 116; No. 32; 15914-15923; PMCID PMC6689949; <a href="https://doi.org/10.1073/pnas.1908304116">10.1073/pnas.1908304116</a></li> <li>Varshavsky, Alexander (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190513-150129586">On the cause of sleep: Protein fragments, the concept of sentinels, and links to epilepsy</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 116; No. 22; 10773-10782; PMCID PMC6561186; <a href="https://doi.org/10.1073/pnas.1904709116">10.1073/pnas.1904709116</a></li> <li>Varshavsky, Alexander (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190108-090142944">N-degron and C-degron pathways of protein degradation</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 116; No. 2; 358-366; PMCID PMC6329975; <a href="https://doi.org/10.1073/pnas.1816596116">10.1073/pnas.1816596116</a></li> <li>Kim, Jeong-Mok and Seok, Ok-Hee, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181108-125308990">Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway</a>; Science; Vol. 362; No. 6418; Art. No. eaat0174; PMCID PMC6551516; <a href="https://doi.org/10.1126/science.aat0174">10.1126/science.aat0174</a></li> <li>Dougan, David A. and Varshavsky, Alexander (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180416-140609766">Understanding the Pro/N-end rule pathway</a>; Nature Chemical Biology; Vol. 14; No. 5; 415-416; <a href="https://doi.org/10.1038/s41589-018-0045-0">10.1038/s41589-018-0045-0</a></li> <li>Oh, Jang-Hyun and Chen, Shun-Jia, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171113-111614515">A reference-based protein degradation assay without global translation inhibitors</a>; Journal of Biological Chemistry; Vol. 292; No. 52; 21457-21465; PMCID PMC5766948; <a href="https://doi.org/10.1074/jbc.M117.814236">10.1074/jbc.M117.814236</a></li> <li>Varshavsky, Alexander (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170628-083941867">The Ubiquitin System, Autophagy, and Regulated Protein Degradation</a>; Annual Review of Biochemistry; Vol. 86; 123-128; <a href="https://doi.org/10.1146/annurev-biochem-061516-044859">10.1146/annurev-biochem-061516-044859</a></li> <li>Oh, Jang-Hyun and Hyun, Ju-Yeon, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170518-073119611">Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 114; No. 22; E4370-E4379; PMCID PMC5465900; <a href="https://doi.org/10.1073/pnas.1705898114">10.1073/pnas.1705898114</a></li> <li>Chen, Shun-Jia and Wu, Xia, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170130-100756755">An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes</a>; Science; Vol. 355; No. 6323; Art. No. eaal3655; PMCID PMC5457285; <a href="https://doi.org/10.1126/science.aal3655">10.1126/science.aal3655</a></li> <li>Wadas, Brandon and Piatkov, Konstantin, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160815-140416336">Analyzing N-terminal Arginylation Through the Use of Peptide Arrays and Degradation Assays</a>; Journal of Biological Chemistry; Vol. 291; No. 40; Art. No. 20976; PMCID PMC5076509; <a href="https://doi.org/10.1074/jbc.M116.747956">10.1074/jbc.M116.747956</a></li> <li>Wadas, Brandon and Borjigin, Jimo, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160706-082440341">Degradation of Serotonin N-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway</a>; Journal of Biological Chemistry; Vol. 291; No. 33; 17178-17196; PMCID PMC5016120; <a href="https://doi.org/10.1074/jbc.M116.734640">10.1074/jbc.M116.734640</a></li> <li>Liu, Yu-Jiao and Liu, Chao, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160218-082640962">Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway</a>; Journal of Biological Chemistry; Vol. 291; No. 14; 7426-7438; PMCID PMC4817174; <a href="https://doi.org/10.1074/jbc.M116.714964">10.1074/jbc.M116.714964</a></li> <li>Piatkov, Konstantin and Vu, Tri, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160509-130856265">Formyl-methionine as a degradation signal at the N-termini of bacterial proteins</a>; Microbial Cell; Vol. 2; No. 10; 376-393; PMCID PMC4745127; <a href="https://doi.org/10.15698/mic2015.10.231">10.15698/mic2015.10.231</a></li> <li>Park, Sang-Eun and Kim, Jeong-Mok, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150316-112138335">Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway</a>; Science; Vol. 347; No. 6227; 1249-1252; PMCID PMC4748709; <a href="https://doi.org/10.1126/science.aaa3844">10.1126/science.aaa3844</a></li> <li>Brower, Christopher S. and Rosen, Connor E., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141105-093127516">Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 111; No. 46; E4936-E4945; PMCID PMC4246273; <a href="https://doi.org/10.1073/pnas.1419587111">10.1073/pnas.1419587111</a></li> <li>Varshavsky, Alexander (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140613-125640695">Discovery of the Biology of the Ubiquitin System</a>; JAMA : the journal of the American Medical Association; Vol. 311; No. 19; 1969-1970; <a href="https://doi.org/10.1001/jama.2014.5549">10.1001/jama.2014.5549</a></li> <li>Piatkov, Konstantin I. and Oh, Jang-Hyun, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140225-100028331">Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 111; No. 9; E817-E826; PMCID PMC3948289; <a href="https://doi.org/10.1073/pnas.1401639111">10.1073/pnas.1401639111</a></li> <li>Kim, Heon-Ki and Kim, Ryu-Ryun, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140102-103647381">The N-Terminal Methionine of Cellular Proteins as a Degradation Signal</a>; Cell; Vol. 156; No. 1; 158-169; PMCID PMC3988316; <a href="https://doi.org/10.1016/j.cell.2013.11.031">10.1016/j.cell.2013.11.031</a></li> <li>Piatkov, Konstantin and Graciet, Emmanuelle, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130813-094316614">Ubiquitin Reference Technique and Its Use in Ubiquitin-Lacking Prokaryotes</a>; PLoS ONE; Vol. 8; No. 6; Art. No. e67952; PMCID PMC3692480; <a href="https://doi.org/10.1371/journal.pone.0067952">10.1371/journal.pone.0067952</a></li> <li>Shemorry, Anna and Hwang, Cheol-Sang, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130716-134300224">Control of Protein Quality and Stoichiometries by N-Terminal Acetylation and the N-End Rule Pathway</a>; Molecular Cell; Vol. 50; No. 4; 540-551; PMCID PMC3665649; <a href="https://doi.org/10.1016/j.molcel.2013.03.018">10.1016/j.molcel.2013.03.018</a></li> <li>Brower, Christopher S. and Piatkov, Konstantin I., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130530-133709518">Neurodegeneration-Associated Protein Fragments as Short-Lived Substrates of the N-End Rule Pathway</a>; Molecular Cell; Vol. 50; No. 2; 161-171; PMCID PMC3640747; <a href="https://doi.org/10.1016/j.molcel.2013.02.009">10.1016/j.molcel.2013.02.009</a></li> <li>Piatkov, Konstantin I. and Colnaghi, Luca, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130211-154805502">The Auto-Generated Fragment of the Usp1 Deubiquitylase Is a Physiological Substrate of the N-End Rule Pathway</a>; Molecular Cell; Vol. 48; No. 6; 926-933; PMCID PMC3889152; <a href="https://doi.org/10.1016/j.molcel.2012.10.012">10.1016/j.molcel.2012.10.012</a></li> <li>Varshavsky, Alexander (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120831-090649691">Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: A hypothesis</a>; Protein Science; Vol. 21; No. 11; PMCID PMC3527701; <a href="https://doi.org/10.1002/pro.2148">10.1002/pro.2148</a></li> <li>Piatkov, Konstantin I. and Brower, Christopher S., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120817-134304319">The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 109; No. 27; E1839-E1847; PMCID PMC3390858; <a href="https://doi.org/10.1073/pnas.1207786109">10.1073/pnas.1207786109</a></li> <li>Varshavsky, Alexander (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120614-103921398">The Ubiquitin System, an Immense Realm</a>; Annual Review of Biochemistry; Vol. 81; 167-176; <a href="https://doi.org/10.1146/annurev-biochem-051910-094049">10.1146/annurev-biochem-051910-094049</a></li> <li>Hwang, Cheol-Sang and Sukalo, Maja, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20111025-084945445">Ubiquitin Ligases of the N-End Rule Pathway: Assessment of Mutations in UBR1 That Cause the Johanson-Blizzard Syndrome</a>; PLoS ONE; Vol. 6; No. 9; Art.No. e24925; PMCID PMC3172311; <a href="https://doi.org/10.1371/journal.pone.0024925">10.1371/journal.pone.0024925</a></li> <li>Varshavsky, Alexander (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110819-091924451">The N-end rule pathway and regulation by proteolysis</a>; Protein Science; Vol. 20; No. 8; 1298-1345; PMCID PMC3189519; <a href="https://doi.org/10.1002/pro.666">10.1002/pro.666</a></li> <li>Hwang, Cheol-Sang and Shemorry, Anna, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20101220-134450477">The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases</a>; Nature Cell Biology; Vol. 12; No. 12; 1177-1185; PMCID PMC3003441; <a href="https://doi.org/10.1038/ncb2121">10.1038/ncb2121</a></li> <li>Brower, Christopher S. and Veiga, Lucia, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100615-141115251">Mouse Dfa Is a Repressor of TATA-box Promoters and Interacts with the Abt1 Activator of Basal Transcription</a>; Journal of Biological Chemistry; Vol. 285; No. 22; 17218-17234; PMCID PMC2878062; <a href="https://doi.org/10.1074/jbc.M110.118638">10.1074/jbc.M110.118638</a></li> <li>Hwang, Cheol-Sang and Shemorry, Anna, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100301-145500742">N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals</a>; Science; Vol. 327; No. 5968; 973-977; PMCID PMC4259118; <a href="https://doi.org/10.1126/science.1183147">10.1126/science.1183147</a></li> <li>Brower, Christopher S. and Varshavsky, Alexander (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100127-092828613">Ablation of Arginylation in the Mouse N-End Rule Pathway: Loss of Fat, Higher Metabolic Rate, Damaged Spermatogenesis, and Neurological Perturbations</a>; PLoS ONE; Vol. 4; No. 11; Art. No. e7757; PMCID PMC2773024; <a href="https://doi.org/10.1371/journal.pone.0007757">10.1371/journal.pone.0007757</a></li> <li>Graciet, Emmanuelle and Walter, Franziska, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20090828-231031940">The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 106; No. 32; 13618-13623; PMCID PMC2726413; <a href="https://doi.org/10.1073/pnas.0906404106">10.1073/pnas.0906404106</a></li> <li>Wang, Haiqing and Piatkov, Konstantin I., el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20090828-112810807">Glutamine-Specific N-Terminal Amidase, a Component of the N-End Rule Pathway</a>; Molecular Cell; Vol. 34; No. 6; 686-695; PMCID PMC2749074; <a href="https://doi.org/10.1016/j.molcel.2009.04.032">10.1016/j.molcel.2009.04.032</a></li> <li>Hwang, Cheol-Sang and Shemorry, Anna, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20090827-155821961">Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 106; No. 7; 2142-2147; PMCID PMC2650122; <a href="https://doi.org/10.1073/pnas.0812316106">10.1073/pnas.0812316106</a></li> <li>Varshavsky, Alexander (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VARjbc08">Discovery of cellular regulation by protein degradation</a>; Journal of Biological Chemistry; Vol. 283; No. 50; 34469-34489; PMCID PMC3259866; <a href="https://doi.org/10.1074/jbc.X800009200">10.1074/jbc.X800009200</a></li> <li>Hwang, Cheol-Sang and Varshavsky, Alexander (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:HWApnas08">Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 105; No. 49; 19188-19193; PMCID PMC2614737; <a href="https://doi.org/10.1073/pnas.0808891105">10.1073/pnas.0808891105</a></li> <li>Varshavsky, Alexander (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VARnsmb08">The N-end rule at atomic resolution</a>; Nature Structural & Molecular Biology; Vol. 15; No. 12; 1238-1240; <a href="https://doi.org/10.1038/nsmb1208-1238">10.1038/nsmb1208-1238</a></li> <li>Xia, Zanxian and Turner, Glenn C., el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:XIAjbc08b">Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter</a>; Journal of Biological Chemistry; Vol. 283; No. 43; 28958-28968; PMCID PMC2570885; <a href="https://doi.org/10.1074/jbc.M803980200">10.1074/jbc.M803980200</a></li> <li>Xia, Zanxian and Webster, Ailsa, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:XIAjbc08">Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway</a>; Journal of Biological Chemistry; Vol. 283; No. 35; 24011-24028; PMCID PMC2527112; <a href="https://doi.org/10.1074/jbc.M802583200">10.1074/jbc.M802583200</a></li> <li>Connor, Rebecca E. and Piatkov, Konstantin, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150112-114337627">Enzymatic N-terminal Addition of Noncanonical Amino Acids to Peptides and Proteins</a>; ChemBioChem; Vol. 9; No. 3; 366-369; <a href="https://doi.org/10.1002/cbic.200700605">10.1002/cbic.200700605</a></li> <li>Hu, Rong-Gui and Wang, Haiqing, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:HURpnas08">The N-end rule pathway is a sensor of heme</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 105; No. 1; 76-81; PMCID PMC2224235; <a href="https://doi.org/10.1073/pnas.0710568105">10.1073/pnas.0710568105</a></li> <li>Schnupf, Pamela and Zhou, Jianmin, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SCHNUiai07">Listeriolysin O Secreted by Listeria monocytogenes into the Host Cell Cytosol Is Degraded by the N-End Rule Pathway</a>; Infection and Immunity; Vol. 75; No. 11; 5135-5147; PMCID PMC2168281; <a href="https://doi.org/10.1128/IAI.00164-07">10.1128/IAI.00164-07</a></li> <li>Varshavsky, Alexander (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VARpnas07">Targeting the absence: Homozygous DNA deletions as immutable signposts for cancer therapy</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 104; No. 38; 14935-14940; PMCID PMC1986591; <a href="https://doi.org/10.1073/pnas.0706546104">10.1073/pnas.0706546104</a></li> <li>Tasaki, Takafumi and Sohr, Reinhard, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:TASjbc07">Biochemical and Genetic Studies of UBR3, a Ubiquitin Ligase with a Function in Olfactory and Other Sensory Systems</a>; Journal of Biological Chemistry; Vol. 282; No. 25; 18510-18520; <a href="https://doi.org/10.1074/jbc.M701894200">10.1074/jbc.M701894200</a></li> <li>Hu, Rong-Gui and Brower, Christopher S., el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:HURjbc06">Arginyltransferase, Its Specificity, Putative Substrates, Bidirectional Promoter, and Splicing-derived Isoforms</a>; Journal of Biological Chemistry; Vol. 281; No. 43; 32559-32573; <a href="https://doi.org/10.1074/jbc.M604355200">10.1074/jbc.M604355200</a></li> <li>An, Jee Young and Seo, Jai Wha, el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:ANJpnas06">Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 103; No. 16; 6212-6217; PMCID PMC1458857; <a href="https://doi.org/10.1073/pnas.0601700103">10.1073/pnas.0601700103</a></li> <li>Graciet, Emmanuelle and Hu, Rong-Gui, el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:GRApnas06a">Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 103; No. 9; 3078-3083; PMCID PMC1413915; <a href="https://doi.org/10.1073/pnas.0511224103">10.1073/pnas.0511224103</a></li> <li>Zenker, Martin and Varshavsky, Alexander (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150319-070411230">Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome)</a>; Nature Genetics; Vol. 37; No. 12; 1345-1350; <a href="https://doi.org/10.1038/ng1681">10.1038/ng1681</a></li> <li>Hu, Rong-Gui and Sheng, Jun, el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150325-092008023">The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators</a>; Nature; Vol. 437; No. 7061; 981-989; <a href="https://doi.org/10.1038/nature04027">10.1038/nature04027</a></li> <li>Tasaki, Takafumi and Mulder, Lubbertus C. F., el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:TASmcb05.969">A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons</a>; Molecular and Cellular Biology; Vol. 25; No. 16; 7120-7136; PMCID PMC1190250; <a href="https://doi.org/10.1128/MCB.25.16.7120-7136.2005">10.1128/MCB.25.16.7120-7136.2005</a></li> <li>Yin, Jinhu and Kwon, Yong Tae, el al. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20111004-142209812">RECQL4, mutated in the Rothmund–Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway</a>; Human Molecular Genetics; Vol. 13; No. 20; 2421-2430; <a href="https://doi.org/10.1093/hmg/ddh269">10.1093/hmg/ddh269</a></li> <li>Kwon, Yong Tae and Xia, Zanxian, el al. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KWOmcb03">Female Lethality and Apoptosis of Spermatocytes in Mice Lacking the UBR2 Ubiquitin Ligase of the N-End Rule Pathway</a>; Molecular and Cellular Biology; Vol. 23; No. 22; 8255-8271; PMCID PMC262401; <a href="https://doi.org/10.1128/MCB.23.22.8255-8271.2003">10.1128/MCB.23.22.8255-8271.2003</a></li> <li>Varshavsky, Alexander (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150325-153608289">The N-end rule and regulation of apoptosis</a>; Nature Cell Biology; Vol. 5; No. 5; 373-376; <a href="https://doi.org/10.1038/ncb0503-373">10.1038/ncb0503-373</a></li> <li>Xie, Youming and Varshavsky, Alexander (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150325-152811477">UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis</a>; Nature Cell Biology; Vol. 4; No. 12; 1003-1007; <a href="https://doi.org/10.1038/ncb889">10.1038/ncb889</a></li> <li>Du, Fangyong and Navarro-Garcia, Federico, el al. (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DUFpnas02">Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 99; No. 22; 14110-14115; PMCID PMC137845; <a href="https://doi.org/10.1073/pnas.172527399">10.1073/pnas.172527399</a></li> <li>Kwon, Yong Tae and Kashina, Anna S., el al. (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141114-160435229">An Essential Role of N-Terminal Arginylation in Cardiovascular Development</a>; Science; Vol. 297; No. 5578; 96-99; <a href="https://doi.org/10.1126/science.1069531">10.1126/science.1069531</a></li> <li>Kwon, Yong Tae and Xia, Zanxian, el al. (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KWOmcb01">Construction and Analysis of Mouse Strains Lacking the Ubiquitin Ligase UBR1 (E3α) of the N-End Rule Pathway</a>; Molecular and Cellular Biology; Vol. 21; No. 23; 8007-8021; PMCID PMC99968; <a href="https://doi.org/10.1128/MCB.21.23.8007-8021.2001">10.1128/MCB.21.23.8007-8021.2001</a></li> <li>Rao, Hai and Uhlmann, Frank, el al. (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150331-072449879">Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability</a>; Nature; Vol. 410; No. 6831; 955; <a href="https://doi.org/10.1038/35073627">10.1038/35073627</a></li> <li>Xie, Youming and Varshavsky, Alexander (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:XIEpnas01">RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 98; No. 6; 3056-3061; PMCID PMC30606; <a href="https://doi.org/10.1073/pnas.071022298">10.1073/pnas.071022298</a></li> <li>Hershko, Avram and Ciechanover, Aaron, el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150513-100923361">The ubiquitin system</a>; Nature Medicine; Vol. 6; No. 10; 1073-1081; <a href="https://doi.org/10.1038/80384">10.1038/80384</a></li> <li>Turner, Glenn C. and Varshavsky, Alexander (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141112-112135305">Detecting and Measuring Cotranslational Protein Degradation in Vivo</a>; Science; Vol. 289; No. 5487; 2117-2120; <a href="https://doi.org/10.1126/science.289.5487.2117">10.1126/science.289.5487.2117</a></li> <li>Varshavsky, Alexander and Turner, Glenn, el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180803-074725065">The Ubiquitin System and the N-End Rule Pathway</a>; Biological Chemistry; Vol. 381; No. 9-10; 779-789; <a href="https://doi.org/10.1515/BC.2000.101">10.1515/BC.2000.101</a></li> <li>Turner, Glenn C. and Du, Fangyong, el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150330-105345474">Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway</a>; Nature; Vol. 405; No. 6786; 579; <a href="https://doi.org/10.1038/35014629">10.1038/35014629</a></li> <li>Kwon, Yong Tae and Balogh, Seth A., el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KWOmcb00">Altered Activity, Social Behavior, and Spatial Memory in Mice Lacking the NTAN1p Amidase and the Asparagine Branch of the N-End Rule Pathway</a>; Molecular and Cellular Biology; Vol. 20; No. 11; 4135-4148; PMCID PMC85783</li> <li>Davydov, Ilia V. and Varshavsky, Alexander (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DAVjbc00">RGS4 is arginylated and degraded by the N-end rule pathway in vitro</a>; Journal of Biological Chemistry; Vol. 275; No. 30; 22931-22941; <a href="https://doi.org/10.1074/jbc.M001605200">10.1074/jbc.M001605200</a></li> <li>Xie, Youming and Varshavsky, Alexander (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:XIEpnas00">Physical association of ubiquitin ligases and the 26S proteasome</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 97; No. 6; 2497-2502; PMCID PMC15957; <a href="https://doi.org/10.1073/pnas.060025497">10.1073/pnas.060025497</a></li> <li>Kwon, Yong Tae and Lévy, Frédéric, el al. (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KWOjbc99">Bivalent Inhibitor of the N-end Rule Pathway</a>; Journal of Biological Chemistry; Vol. 274; No. 25; 18135-18139; <a href="https://doi.org/10.1074/jbc.274.25.18135">10.1074/jbc.274.25.18135</a></li> <li>Dünnwald, Martin and Varshavsky, Alexander, el al. (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DUNmbc99">Detection of Transient In Vivo Interactions between Substrate and Transporter during Protein Translocation into the Endoplasmic Reticulum</a>; Molecular Biology of the Cell; Vol. 10; No. 2; 329-344; PMCID PMC25172; <a href="https://doi.org/10.1091/mbc.10.2.329">10.1091/mbc.10.2.329</a></li> <li>Kwon, Yong Tae and Kashina, Anna S., el al. (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KWOmcb99">Alternative Splicing Results in Differential Expression, Activity, and Localization of the Two Forms of Arginyl-tRNA-Protein Transferase, a Component of the N-End Rule Pathway</a>; Molecular and Cellular Biology; Vol. 19; No. 1; 182-193; PMCID PMC83877; <a href="https://doi.org/10.1128/mcb.19.1.182">10.1128/mcb.19.1.182</a></li> <li>Varshavsky, Alexander (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201125-124911297">Recent studies of the ubiquitin system and the N-end rule pathway</a>; Harvey lectures; Vol. 96; 93-116</li> <li>Kwon, Yong Tae and Reiss, Yuval, el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KWOpnas98">The mouse and human genes encoding the recognition component of the N-end rule pathway</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 95; No. 14; 7898-7903; PMCID PMC20901; <a href="https://doi.org/10.1073/pnas.95.14.7898">10.1073/pnas.95.14.7898</a></li> <li>Varshavsky, Alexander (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VARpnas98">Codominant interference, antieffectors, and multitarget drugs</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 95; No. 5; 2094-2099; PMCID PMC19261</li> <li>Ramos, Paula C. and Höckendorff, Jörg, el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-162600012">Ump1p Is Required for Proper Maturation of the 20S Proteasome and Becomes Its Substrate upon Completion of the Assembly</a>; Cell; Vol. 92; No. 4; 489-499; <a href="https://doi.org/10.1016/s0092-8674(00)80942-3">10.1016/s0092-8674(00)80942-3</a></li> <li>Byrd, Christopher and Turner, Glenn C., el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-162600155">The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor</a>; EMBO Journal; Vol. 17; No. 1; 269-277; PMCID PMC1170377; <a href="https://doi.org/10.1093/emboj/17.1.269">10.1093/emboj/17.1.269</a></li> <li>Varshavsky, Alexander (1997) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-162600310">The ubiquitin system</a>; Trends in Biochemical Sciences; Vol. 22; No. 10; 383-387; <a href="https://doi.org/10.1016/s0968-0004(97)01122-5">10.1016/s0968-0004(97)01122-5</a></li> <li>Varshavsky, Alexander (1997) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-162600429">The N-end rule pathway of protein degradation</a>; Genes to Cells; Vol. 2; No. 1; 13-28; <a href="https://doi.org/10.1046/j.1365-2443.1997.1020301.x">10.1046/j.1365-2443.1997.1020301.x</a></li> <li>Grigoryev, Sergei and Stewart, Albert E., el al. (1996) <a href="https://resolver.caltech.edu/CaltechAUTHORS:GRIjbc96">A Mouse Amidase Specific for N-terminal Asparagine: the gene, the enzyme, and their function in the N-end rule pathway</a>; Journal of Biological Chemistry; Vol. 271; No. 45; 28521-28532; <a href="https://doi.org/10.1074/jbc.271.45.28521">10.1074/jbc.271.45.28521</a></li> <li>Varshavsky, Alexander (1996) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VARpnas96">The N-end rule: Functions, mysteries, uses</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 93; No. 22; 12142-12149; PMCID PMC37957; <a href="https://doi.org/10.1073/pnas.93.22.12142">10.1073/pnas.93.22.12142</a></li> <li>Ghislain, Michel and Dohmen, R. Jürgen, el al. (1996) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-162600585">Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae</a>; EMBO Journal; Vol. 15; No. 18; 4884-4899; PMCID PMC452226; <a href="https://doi.org/10.1002/j.1460-2075.1996.tb00869.x">10.1002/j.1460-2075.1996.tb00869.x</a></li> <li>Lévy, Frédéric and Johnsson, Nils, el al. (1996) <a href="https://resolver.caltech.edu/CaltechAUTHORS:LEVpnas96">Using ubiquitin to follow the metabolic fate of a protein</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 93; No. 10; 4907-4912; PMCID PMC39378; <a href="https://doi.org/10.1073/pnas.93.10.4907">10.1073/pnas.93.10.4907</a></li> <li>Dohmen, R. Jürgen and Stappen, Reiner, el al. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-152331529">An Essential Yeast Gene Encoding a Homolog of Ubiquitin-activating Enzyme</a>; Journal of Biological Chemistry; Vol. 270; No. 30; 18099-18109; <a href="https://doi.org/10.1074/jbc.270.30.18099">10.1074/jbc.270.30.18099</a></li> <li>Baker, Rohan T. and Varshavsky, Alexander (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-152331656">Yeast N-terminal Amidase: a new enzyme and component of the N-end rule pathway</a>; Journal of Biological Chemistry; Vol. 270; No. 20; 12065-12074; <a href="https://doi.org/10.1074/jbc.270.20.12065">10.1074/jbc.270.20.12065</a></li> <li>Varshavsky, Alexander (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VARpnas95">Codominance and toxins: A path to drugs of nearly unlimited selectivity</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 92; No. 9; 3663-3667; PMCID PMC42021; <a href="https://doi.org/10.1073/pnas.92.9.3663">10.1073/pnas.92.9.3663</a></li> <li>Johnston, Jennifer A. and Johnson, Erica S., el al. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-152331800">Methotrexate Inhibits Proteolysis of Dihydrofolate Reductase by the N-end Rule Pathway</a>; Journal of Biological Chemistry; Vol. 270; No. 14; 8172-8178; <a href="https://doi.org/10.1074/jbc.270.14.8172">10.1074/jbc.270.14.8172</a></li> <li>Varshavsky, A. J. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210211-152331936">The N-end Rule</a>; Cold Spring Harbor Symposia on Quantitative Biology; Vol. 60; 461-478; <a href="https://doi.org/10.1101/sqb.1995.060.01.051">10.1101/sqb.1995.060.01.051</a></li> <li>Johnsson, Nils and Varshavsky, Alexander (1994) <a href="https://resolver.caltech.edu/CaltechAUTHORS:JOHpnas94">Split ubiquitin as a sensor of protein interactions in vivo</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 91; No. 22; 10340-10344; PMCID PMC45015; <a href="https://doi.org/10.1073/pnas.91.22.10340">10.1073/pnas.91.22.10340</a></li> <li>Madura, Kiran and Varshavsky, Alexander (1994) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150121-092636074">Degradation of Gα by the N-End Rule Pathway</a>; Science; Vol. 265; No. 5177; 1454-1458; <a href="https://doi.org/10.1126/science.8073290">10.1126/science.8073290</a></li> <li>Johnsson, Nils and Varshavsky, Alexander (1994) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525258">Ubiquitin-assisted dissection of protein transport across membranes</a>; EMBO Journal; Vol. 13; No. 11; 2686-2698; PMCID PMC395143; <a href="https://doi.org/10.1002/j.1460-2075.1994.tb06559.x">10.1002/j.1460-2075.1994.tb06559.x</a></li> <li>Dohmen, R. Jürgen and Wu, Peipei, el al. (1994) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150120-134752646">Heat-Inducible Degron: A Method for Constructing Temperature-Sensitive Mutants</a>; Science; Vol. 263; No. 5151; 1273-1276; <a href="https://doi.org/10.1126/science.8122109">10.1126/science.8122109</a></li> <li>Ota, Irene M. and Varshavsky, Alexander (1993) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150122-121838530">A yeast protein similar to bacterial two-component regulators</a>; Science; Vol. 262; No. 5133; 566-569; <a href="https://doi.org/10.1126/science.8211183">10.1126/science.8211183</a></li> <li>Shrader, Thomas E. and Tobias, John W., el al. (1993) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120308-111115401">The N-End Rule in Escherichia coli: Cloning and Analysis of the Leucyl, Phenylalanyl-tRNA-Protein Transferase Gene aat</a>; Journal of Bacteriology; Vol. 175; No. 14; 4364-4374; PMCID PMC204876; <a href="https://doi.org/10.1128/jb.175.14.4364-4374.1993">10.1128/jb.175.14.4364-4374.1993</a></li> <li>Madura, Kiran and Dohmen, R. Jürgen, el al. (1993) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525353">N-recognin/Ubc2 interactions in the N-end rule pathway</a>; Journal of Biological Chemistry; Vol. 268; No. 16; 12046-12054; <a href="https://doi.org/10.1016/s0021-9258(19)50306-4">10.1016/s0021-9258(19)50306-4</a></li> <li>Baker, Rohan T. and Tobias, John W., el al. (1992) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525426">Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family</a>; Journal of Biological Chemistry; Vol. 267; No. 32; 23364-23375; <a href="https://doi.org/10.1016/s0021-9258(18)50100-9">10.1016/s0021-9258(18)50100-9</a></li> <li>Varshavsky, Alexander (1992) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525504">The N-end rule</a>; Cell; Vol. 69; No. 5; 725-735; <a href="https://doi.org/10.1016/0092-8674(92)90285-k">10.1016/0092-8674(92)90285-k</a></li> <li>Ota, Irene M. and Varshavsky, Alexander (1992) <a href="https://resolver.caltech.edu/CaltechAUTHORS:OTApnas92">A gene encoding a putative tyrosine phosphatase suppresses lethality of an N-end rule-dependent mutant</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 89; No. 6; 2355-2359; PMCID PMC48656; <a href="https://doi.org/10.1073/pnas.89.6.2355">10.1073/pnas.89.6.2355</a></li> <li>Johnson, Erica S. and Bartel, Bonnie, el al. (1992) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525582">Ubiquitin as a degradation signal</a>; EMBO Journal; Vol. 11; No. 2; 497-505; PMCID PMC556480; <a href="https://doi.org/10.1002/j.1460-2075.1992.tb05080.x">10.1002/j.1460-2075.1992.tb05080.x</a></li> <li>Tobias, John W. and Shrader, Thomas E., el al. (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525693">The N-end rule in bacteria</a>; Science; Vol. 254; No. 5036; 1374-1377; <a href="https://doi.org/10.1126/science.1962196">10.1126/science.1962196</a></li> <li>Dohmen, R. Jürgen and Madura, Kiran, el al. (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DOHpnas91">The N-End Rule is Mediated by the UBC2(RAD6) Ubiquitin-Conjugating Enzyme</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 88; No. 16; 7351-7355; PMCID PMC52293; <a href="https://doi.org/10.1073/pnas.88.16.7351">10.1073/pnas.88.16.7351</a></li> <li>Tobias, John W. and Varshavsky, Alexander (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525763">Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae</a>; Journal of Biological Chemistry; Vol. 266; No. 18; 12021-12028; <a href="https://doi.org/10.1016/s0021-9258(18)99059-9">10.1016/s0021-9258(18)99059-9</a></li> <li>Hochstrasser, Mark and Ellison, Michael J., el al. (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:HOCpnas91">The short-lived MATα2 transcriptional regulator is ubiquitinated in vivo</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 88; No. 11; 4606-4610; PMCID PMC51714; <a href="https://doi.org/10.1073/pnas.88.11.4606">10.1073/pnas.88.11.4606</a></li> <li>Baker, Rohan T. and Varshavsky, Alexander (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:BAKpnas91">Inhibition of the N-end rule pathway in living cells</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 88; No. 4; 1090-1094; PMCID PMC50962; <a href="https://doi.org/10.1073/pnas.88.4.1090">10.1073/pnas.88.4.1090</a></li> <li>Varshavsky, Alexander (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525821">Naming a targeting signal</a>; Cell; Vol. 64; No. 1; 13-15; <a href="https://doi.org/10.1016/0092-8674(91)90202-a">10.1016/0092-8674(91)90202-a</a></li> <li>McGrath, John P. and Jentsch, Stefan, el al. (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210210-151525895">UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme</a>; EMBO Journal; Vol. 10; No. 1; 227-236; PMCID PMC452634; <a href="https://doi.org/10.1002/j.1460-2075.1991.tb07940.x">10.1002/j.1460-2075.1991.tb07940.x</a></li> <li>Johnson, Erica S. and Gonda, David K., el al. (1990) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142402554">Cis-trans recognition and subunit-specific degradation of short-lived proteins</a>; Nature; Vol. 346; No. 6281; 287-291; <a href="https://doi.org/10.1038/346287a0">10.1038/346287a0</a></li> <li>Hochstrasser, Mark and Varshavsky, Alexander (1990) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142402686">In vivo degradation of a transcriptional regulator: The yeast α2 repressor</a>; Cell; Vol. 61; No. 4; 697-708; <a href="https://doi.org/10.1016/0092-8674(90)90481-s">10.1016/0092-8674(90)90481-s</a></li> <li>Balzi, Elisabetta and Choder, Mordechai, el al. (1990) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142402779">Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae</a>; Journal of Biological Chemistry; Vol. 265; No. 13; 7464-7471; <a href="https://doi.org/10.1016/s0021-9258(19)39136-7">10.1016/s0021-9258(19)39136-7</a></li> <li>Gonda, David K. and Bachmair, Andreas, el al. (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142402869">Universality and Structure of the N-end Rule</a>; Journal of Biological Chemistry; Vol. 264; No. 28; 16700-16712; <a href="https://doi.org/10.1016/s0021-9258(19)84762-2">10.1016/s0021-9258(19)84762-2</a></li> <li>McGrath, John P. and Varshavsky, Alexander (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142402941">The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein</a>; Nature; Vol. 340; No. 6232; 400-404; <a href="https://doi.org/10.1038/340400a0">10.1038/340400a0</a></li> <li>Winter, Edward and Varshavsky, Alexander (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142403046">A DNA binding protein that recognizes oligo(dA)•oligo(dT) tracts</a>; EMBO Journal; Vol. 8; No. 6; 1867-1877; PMCID PMC401036; <a href="https://doi.org/10.1002/j.1460-2075.1989.tb03583.x">10.1002/j.1460-2075.1989.tb03583.x</a></li> <li>Finley, Daniel and Bartel, Bonnie, el al. (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142403105">The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis</a>; Nature; Vol. 338; No. 6214; 394-401; <a href="https://doi.org/10.1038/338394a0">10.1038/338394a0</a></li> <li>Bachmair, Andreas and Varshavsky, Alexander (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142403306">The degradation signal in a short-lived protein</a>; Cell; Vol. 56; No. 6; 1019-1032; <a href="https://doi.org/10.1016/0092-8674(89)90635-1">10.1016/0092-8674(89)90635-1</a></li> <li>Chau, Vincent and Tobias, John W., el al. (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142403198">A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein</a>; Science; Vol. 243; No. 4898; 1576-1583; <a href="https://doi.org/10.1126/science.2538923">10.1126/science.2538923</a></li> <li>Varshavsky, A. and Bachmair, A., el al. (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201125-154026315">Targeting of proteins for degradation</a>; Biotechnology (Reading, Mass.); Vol. 13; 109-43</li> <li>Goebl, Mark G. and Yochem, John, el al. (1988) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142403433">The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme</a>; Science; Vol. 241; No. 4871; 1331-1335; <a href="https://doi.org/10.1126/science.2842867">10.1126/science.2842867</a></li> <li>Solomon, Mark J. and Larsen, Pamela L., el al. (1988) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142403364">Mapping protein-DNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene</a>; Cell; Vol. 53; No. 6; 937-947; <a href="https://doi.org/10.1016/s0092-8674(88)90469-2">10.1016/s0092-8674(88)90469-2</a></li> <li>Bartel, Bonnie and Varshavsky, Alexander (1988) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210129-142403546">Hypersensitivity to heavy water: A new conditional phenotype</a>; Cell; Vol. 52; No. 6; 935-941; <a href="https://doi.org/10.1016/0092-8674(88)90435-7">10.1016/0092-8674(88)90435-7</a></li> <li>Varshavsky, Alexander and Bachmair, Andreas, el al. (1987) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201201-103332052">N-end rule of selective protein turnover: mechanistic aspects and functional implications</a>; Biochemical Society Transactions; Vol. 15; No. 5; 815-816; <a href="https://doi.org/10.1042/bst0150815">10.1042/bst0150815</a></li> <li>Peck, Lawrence J. and Millstein, Larry, el al. (1987) <a href="https://resolver.caltech.edu/CaltechAUTHORS:PECmcb87">Transcriptionally inactive oocyte-type 5S RNA genes of Xenopus laevis are complexed with TFIIIA in vitro</a>; Molecular and Cellular Biology; Vol. 7; No. 10; 3503-3510; PMCID PMC368002; <a href="https://doi.org/10.1128/mcb.7.10.3503">10.1128/mcb.7.10.3503</a></li> <li>Solomon, Mark J. and Varshavsky, Alexander (1987) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SOLmcb87">A nuclease-hypersensitive region forms de novo after chromosome replication</a>; Molecular and Cellular Biology; Vol. 7; No. 10; 3822-3825; PMCID PMC368040; <a href="https://doi.org/10.1128/mcb.7.10.3822">10.1128/mcb.7.10.3822</a></li> <li>Jentsch, Stefan and McGrath, John P., el al. (1987) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162657916">The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme</a>; Nature; Vol. 329; No. 6135; 131-134; <a href="https://doi.org/10.1038/329131a0">10.1038/329131a0</a></li> <li>Özkaynak, Engin and Finley, Daniel, el al. (1987) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-114432603">The yeast ubiquitin genes: a family of natural gene fusions</a>; EMBO Journal; Vol. 6; No. 5; 1429-1439; PMCID PMC553949; <a href="https://doi.org/10.1002/j.1460-2075.1987.tb02384.x">10.1002/j.1460-2075.1987.tb02384.x</a></li> <li>Finley, Daniel and Özkaynak, Engin, el al. (1987) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162657728">The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses</a>; Cell; Vol. 48; No. 6; 1035-1046; <a href="https://doi.org/10.1016/0092-8674(87)90711-2">10.1016/0092-8674(87)90711-2</a></li> <li>Snapka, Robert M. and Kwok, Kwan, el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SNApnas86">Post-separation detection of nucleic acids and proteins by neutron activation</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 83; No. 23; 8939-8942; PMCID PMC387049; <a href="https://doi.org/10.1073/pnas.83.23.8939">10.1073/pnas.83.23.8939</a></li> <li>Bachmair, Andreas and Finley, Daniel, el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162658169">In vivo half-life of a protein is a function of its amino-terminal residue</a>; Science; Vol. 234; No. 4773; 179-186; <a href="https://doi.org/10.1126/science.3018930">10.1126/science.3018930</a></li> <li>Swerdlow, Paul S. and Finley, Daniel, el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162658310">Enhancement of immunoblot sensitivity by heating of hydrated filters</a>; Analytical Biochemistry; Vol. 156; No. 1; 147-153; <a href="https://doi.org/10.1016/0003-2697(86)90166-1">10.1016/0003-2697(86)90166-1</a></li> <li>Solomon, Mark J. and Strauss, Francois, el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SOLpnas86">A mammalian high mobility group protein recognizes any stretch of six A·T base pairs in duplex DNA</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 83; No. 5; 1276-1280; PMCID PMC323058; <a href="https://doi.org/10.1073/pnas.83.5.1276">10.1073/pnas.83.5.1276</a></li> <li>Gros, Philippe and Croop, James, el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:GROpnas86">Isolation and characterization of DNA sequences amplified in multidrug-resistant hamster cells</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 83; No. 2; 337-341; PMCID PMC322853; <a href="https://doi.org/10.1073/pnas.83.2.337">10.1073/pnas.83.2.337</a></li> <li>Ciccarelli, Richard B. and Solomon, Mark J., el al. (1985) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162658489">In vivo effects of cis- and trans-diamminedichloroplatinum(II) on SV40 chromosomes: differential repair, DNA-protein crosslinking, and inhibition of replication</a>; Biochemistry; Vol. 24; No. 26; 7533-7540; <a href="https://doi.org/10.1021/bi00347a005">10.1021/bi00347a005</a></li> <li>Solomon, Mark J. and Varshavsky, Alexander (1985) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SOLpnas85">Formaldehyde-mediated DNA-protein crosslinking: A probe for in vivo chromatin structures</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 82; No. 19; 6470-6474; PMCID PMC390738; <a href="https://doi.org/10.1073/pnas.82.19.6470">10.1073/pnas.82.19.6470</a></li> <li>Barsoum, James and Varshavsky, Alexander (1985) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162658617">Preferential localization of variant nucleosomes near the 5'-end of the mouse dihydrofolate reductase gene</a>; Journal of Biological Chemistry; Vol. 260; No. 12; 7688-7697; <a href="https://doi.org/10.1016/s0021-9258(17)39663-1">10.1016/s0021-9258(17)39663-1</a></li> <li>Ciechanover, A. and Finley, D., el al. (1985) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201125-154027285">Mammalian cell cycle mutant defective in intracellular protein degradation and ubiquitin-protein conjugation</a>; Progress in clinical and biological research; Vol. 180; 17-31</li> <li>Özkaynak, Engin and Finley, Daniel, el al. (1984) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-120945572">The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein</a>; Nature; Vol. 312; No. 5995; 663-666; <a href="https://doi.org/10.1038/312663a0">10.1038/312663a0</a></li> <li>Strauss, François and Varshavsky, Alexander (1984) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162658719">A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome</a>; Cell; Vol. 37; No. 3; 889-901; <a href="https://doi.org/10.1016/0092-8674(84)90424-0">10.1016/0092-8674(84)90424-0</a></li> <li>Roninson, Igor B. and Abelson, Herbert T., el al. (1984) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-114432302">Amplification of specific DNA sequences correlates with multi-drug resistance in Chinese hamster cells</a>; Nature; Vol. 309; No. 5969; 626-628; <a href="https://doi.org/10.1038/309626a0">10.1038/309626a0</a></li> <li>Finley, Daniel and Ciechanover, Aaron, el al. (1984) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162659002">Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85</a>; Cell; Vol. 37; No. 1; 43-55; <a href="https://doi.org/10.1016/0092-8674(84)90299-x">10.1016/0092-8674(84)90299-x</a></li> <li>Ciechanover, Aaron and Finley, Daniel, el al. (1984) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-162658866">Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85</a>; Cell; Vol. 37; No. 1; 57-66; <a href="https://doi.org/10.1016/0092-8674(84)90300-3">10.1016/0092-8674(84)90300-3</a></li> <li>Ciechanover, Aaron and Finley, Daniel, el al. (1984) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201201-102219067">The ubiquitin-mediated proteolytic pathway and mechanisms of energy‐dependent intracellular protein degradation</a>; Journal of Cellular Biochemistry; Vol. 24; No. 1; 27-53; <a href="https://doi.org/10.1002/jcb.240240104">10.1002/jcb.240240104</a></li> <li>Varshavsky, Alexander (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-114432693">Do stalled replication forks synthesize a specific alarmone?</a>; Journal of Theoretical Biology; Vol. 105; No. 4; 707-714; <a href="https://doi.org/10.1016/0022-5193(83)90228-x">10.1016/0022-5193(83)90228-x</a></li> <li>Snapka, Robert M. and Varshavsky, Alexander (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SNApnas83">Loss of unstably amplified dihydrofolate reductase genes from mouse cells is greatly accelerated by hydroxyurea</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 80; No. 24; 7533-7537; PMCID PMC389986; <a href="https://doi.org/10.1073/pnas.80.24.7533">10.1073/pnas.80.24.7533</a></li> <li>Wu, Kun Chi and Strauss, François, el al. (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-114432865">Nucleosome arrangement in green monkey α-satellite chromatin: Superimposition of non-random and apparently random patterns</a>; Journal of Molecular Biology; Vol. 170; No. 1; 93-117; <a href="https://doi.org/10.1016/s0022-2836(83)80228-9">10.1016/s0022-2836(83)80228-9</a></li> <li>Varshavsky, Alexander (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-114432779">Diadenosine 5′, 5′′′-P¹, P⁴-tetraphosphate: a pleiotropically acting alarmone?</a>; Cell; Vol. 34; No. 3; 711-712; <a href="https://doi.org/10.1016/0092-8674(83)90526-3">10.1016/0092-8674(83)90526-3</a></li> <li>Barsoum, James and Varshavsky, Alexander (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:BARpnas83">Mitogenic hormones and tumor promoters greatly increase the incidence of colony-forming cells bearing amplified dihydrofolate reductase genes</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 80; No. 17; 5330-5334; PMCID PMC384249; <a href="https://doi.org/10.1073/pnas.80.17.5330">10.1073/pnas.80.17.5330</a></li> <li>Swerdlow, Paul S. and Varshavsky, Alexander (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150600293">Affinity of HMG17 for a mononucleosome is not influenced by the presence of ubiquitin-H2A semihistone but strongly depends on DNA fragment size</a>; Nucleic Acids Research; Vol. 11; No. 2; 387-401; PMCID PMC325721; <a href="https://doi.org/10.1093/nar/11.2.387">10.1093/nar/11.2.387</a></li> <li>Varshavsky, A. and Levinger, L., el al. (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150600550">Cellular and SV40 Chromatin: Replication, Segregation, Ubiqiritination, Nuclease-hypersensitive Sites, HMG-containing Nueleosomes, and Heterochromatin-specific Protein</a>; Cold Spring Harbor Symposia on Quantitative Biology; Vol. 47; 511-528; <a href="https://doi.org/10.1101/sqb.1983.047.01.061">10.1101/sqb.1983.047.01.061</a></li> <li>Varshavsky, A. and Barsoum, J., el al. (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201125-154028200">Acquisition and loss of amplified genes: dramatic effects of hormones, tumor promoters and cytotoxic drugs</a>; Princess Takamatsu symposia; Vol. 14; 235-254</li> <li>Levinger, Louis and Varshavsky, Alexander (1982) <a href="https://resolver.caltech.edu/CaltechAUTHORS:LEVpnas82">Protein D1 preferentially binds A+T-rich DNA in vitro and is a component of Drosophila melanogaster nucleosomes containing A+T-rich satellite DNA</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 79; No. 23; 7152-7156; PMCID PMC347296; <a href="https://doi.org/10.1073/pnas.79.23.7152">10.1073/pnas.79.23.7152</a></li> <li>Barsoum, James and Levinger, Louis, el al. (1982) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150600418">On the chromatin structure of the amplified, transcriptionally active gene for dihydrofolate reductase in mouse cells</a>; Journal of Biological Chemistry; Vol. 257; No. 9; 5274-5282; <a href="https://doi.org/10.1016/s0021-9258(18)34667-2">10.1016/s0021-9258(18)34667-2</a></li> <li>Boyce, Frederick M. and Sundin, Olof, el al. (1982) <a href="https://resolver.caltech.edu/CaltechAUTHORS:BOYjvir82">New way to isolate simian virus 40 nucleoprotein complexes from infected cells: use of a thiol-specific reagent</a>; Journal of Virology; Vol. 42; No. 1; 292-296; PMCID PMC256070; <a href="https://doi.org/10.1128/jvi.42.1.292-296.1982">10.1128/jvi.42.1.292-296.1982</a></li> <li>Levinger, Louis and Varshavsky, Alexander (1982) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150600167">Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the drosophila genome</a>; Cell; Vol. 28; No. 2; 375-385; <a href="https://doi.org/10.1016/0092-8674(82)90355-5">10.1016/0092-8674(82)90355-5</a></li> <li>Sundin, Olof and Varshavsky, Alexander (1981) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150559952">Arrest of segregation leads to accumulation of highly intertwined catenated dimers: Dissection of the final stages of SV40 DNA replication</a>; Cell; Vol. 25; No. 3; 659-669; <a href="https://doi.org/10.1016/0092-8674(81)90173-2">10.1016/0092-8674(81)90173-2</a></li> <li>Levinger, Louis and Varshavsky, Alexander (1981) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150600047">Heat-shock proteins of Drosophila are associated with nuclease-resistant, high-salt-resistant nuclear structures</a>; Journal of Cell Biology; Vol. 90; No. 3; 793-796; PMCID PMC2111893; <a href="https://doi.org/10.1083/jcb.90.3.793">10.1083/jcb.90.3.793</a></li> <li>Varshavsky, Alexander (1981) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VARpnas81">On the possibility of metabolic control of replicon "misfiring": Relationship to emergence of malignant phenotypes in mammalian cell lineages</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 78; No. 6; 3673-3677; PMCID PMC319633; <a href="https://doi.org/10.1073/pnas.78.6.3673">10.1073/pnas.78.6.3673</a></li> <li>Levinger, Louis and Barsoum, James, el al. (1981) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150559856">Two-dimensional hybridization mapping of nucleosomes: Comparison of DNA and protein patterns</a>; Journal of Molecular Biology; Vol. 146; No. 3; 287-304; <a href="https://doi.org/10.1016/0022-2836(81)90389-2">10.1016/0022-2836(81)90389-2</a></li> <li>Sundin, Olof and Varshavsky, Alexander (1980) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150559204">Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers</a>; Cell; Vol. 21; No. 1; 103-114; <a href="https://doi.org/10.1016/0092-8674(80)90118-x">10.1016/0092-8674(80)90118-x</a></li> <li>Levinger, Louis and Varshavsky, Alexander (1980) <a href="https://resolver.caltech.edu/CaltechAUTHORS:LEVpnas80">High-resolution fractionation of nucleosomes: minor particles, "whiskers," and separation of mononucleosomes containing and lacking A24 semihistone</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 77; No. 6; 3244-3248; PMCID PMC349591; <a href="https://doi.org/10.1073/pnas.77.6.3244">10.1073/pnas.77.6.3244</a></li> <li>Sundin, Olof and Varshavsky, Alexander (1979) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150559088">Staphylococcal nuclease makes a single non-random cut in the simian virus 40 viral minichromosome</a>; Journal of Molecular Biology; Vol. 132; No. 3; 535-546; <a href="https://doi.org/10.1016/0022-2836(79)90274-2">10.1016/0022-2836(79)90274-2</a></li> <li>Varshavsky, Alexander J. and Sundin, Olof, el al. (1979) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210122-150556684">A stretch of "late" SV40 viral DNA about 400 bp long which includes the origin of replication is specifically exposed in SV40 minichromosomes</a>; Cell; Vol. 16; No. 2; 453-466; <a href="https://doi.org/10.1016/0092-8674(79)90021-7">10.1016/0092-8674(79)90021-7</a></li> <li>Varshavsky, A. J. and Sundin, O. H., el al. (1978) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-135308672">SV40 viral minichromosome: preferential exposure of the origin of replication as probed by restriction endonucleases</a>; Nucleic Acids Research; Vol. 5; No. 10; 3469-3478; PMCID PMC342688; <a href="https://doi.org/10.1093/nar/5.10.3469">10.1093/nar/5.10.3469</a></li> <li>Varshavsky, A. J. and Bakayev, V. V., el al. (1978) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-135308449">On the structure of cellular and viral chromatin</a>; Philosophical Transactions of the Royal Society of London. B, Biological Sciences; Vol. 283; No. 997; 275-285; <a href="https://doi.org/10.1098/rstb.1978.0024">10.1098/rstb.1978.0024</a></li> <li>Shmatchenko, V. V. and Varshavsky, A. J. (1978) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-135308547">A technique of low-pH gel electrophoresis of chromosomal proteins which does not require preliminary removal of DNA</a>; Analytical Biochemistry; Vol. 85; No. 1; 42-46; <a href="https://doi.org/10.1016/0003-2697(78)90271-3">10.1016/0003-2697(78)90271-3</a></li> <li>Varshavsky, A. J. and Bakayev, V. V., el al. (1978) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-135308326">On the Structure of Eukaryotic, Prokaryotic, and Viral Chromatin</a>; Cold Spring Harbor Symposia on Quantitative Biology; Vol. 42; No. 1; 457-473; <a href="https://doi.org/10.1101/sqb.1978.042.01.049">10.1101/sqb.1978.042.01.049</a></li> <li>Varshavsky, A. J. and Nedospasov, S. A., el al. (1977) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201218-095603050">Compact form of SV40 viral minichromosome is resistant to nuclease: possible implications for chromatin structure</a>; Nucleic Acids Research; Vol. 4; No. 10; 3303-3325; PMCID PMC342655; <a href="https://doi.org/10.1093/nar/4.10.3303">10.1093/nar/4.10.3303</a></li> <li>Varshavsky, A. J. and Nedospasov, S. A., el al. (1977) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201218-095602925">Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotein</a>; Nucleic Acids Research; Vol. 4; No. 8; 2725-2746; PMCID PMC342604; <a href="https://doi.org/10.1093/nar/4.8.2725">10.1093/nar/4.8.2725</a></li> <li>Bakayev, V. V. and Bakayeva, T. G., el al. (1977) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201218-095602789">Nucleosomes and subnucleosomes: heterogeneity and composition</a>; Cell; Vol. 11; No. 3; 619-629; <a href="https://doi.org/10.1016/0092-8674(77)90079-4">10.1016/0092-8674(77)90079-4</a></li> <li>Varshavsky, A. J. and Georgiev, G. P. (1976) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210203-074258460">Free DNA stretches in histone H1-depleted chromatin and their possible relation to chromomere structure</a>; Molecular Biology Reports; Vol. 3; No. 1; 27-38; <a href="https://doi.org/10.1007/bf00357206">10.1007/bf00357206</a></li> <li>Varshavsky, A. J. and Bakayev, V. V., el al. (1976) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201216-124003102">Minichromosome of simian virus 40: presence of histone HI</a>; Nucleic Acids Research; Vol. 3; No. 8; 2101-2114; PMCID PMC343065; <a href="https://doi.org/10.1093/nar/3.8.2101">10.1093/nar/3.8.2101</a></li> <li>Varshavsky, Alexander J. and Bakayev, Valery V., el al. (1976) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201216-124002591">Studies on Chromatin. Free DNA in Sheared Chromatin</a>; European Journal of Biochemistry; Vol. 66; No. 2; 211-223; <a href="https://doi.org/10.1111/j.1432-1033.1976.tb10510.x">10.1111/j.1432-1033.1976.tb10510.x</a></li> <li>Varshavsky, A. J. and Bakayev, V. V., el al. (1976) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201216-124002783">Heterogeneity of chromatin subunits in vitro and location of histone H1</a>; Nucleic Acids Research; Vol. 3; No. 2; 477-492; PMCID PMC342917; <a href="https://doi.org/10.1093/nar/3.2.477">10.1093/nar/3.2.477</a></li> <li>Varshavsky, A. J. and Bakayev, V. V. (1975) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210317-090059214">Studies on chromatin. IV. Evidence for a toroidal shape of chromatin subunits</a>; Molecular Biology Reports; Vol. 2; No. 3; 247-254; <a href="https://doi.org/10.1007/bf00356995">10.1007/bf00356995</a></li> <li>Varshavsky, A. J. and Bakayev, V. V. (1975) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210317-085746135">Studies on chromatin. III. v-Bodies and Free DNA in Chromatin Lacking Histone H1</a>; Molecular Biology Reports; Vol. 2; No. 3; 209-217; <a href="https://doi.org/10.1007/bf00356990">10.1007/bf00356990</a></li> <li>Varshavsky, A. J. and Georgiev, G. P. (1975) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210317-083952421">Studies on chromatin. V. A model for the structure of chromatin subunit</a>; Molecular Biology Reports; Vol. 2; No. 3; 255-262; <a href="https://doi.org/10.1007/bf00356996">10.1007/bf00356996</a></li> <li>Varshavsky, A. J. and Ilyin, Yu. V., el al. (1974) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201216-124002260">Very long stretches of free DNA in chromatin</a>; Nature; Vol. 250; No. 5467; 602-606; <a href="https://doi.org/10.1038/250602a0">10.1038/250602a0</a></li> <li>Ilyin, Yu. V. and Bayev, A. A., Jr., el al. (1974) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210317-085445588">Histone-histone proximity in chromatin as seen by imidoester cross-linking</a>; Molecular Biology Reports; Vol. 1; No. 6; 343-348; <a href="https://doi.org/10.1007/bf00309568">10.1007/bf00309568</a></li> <li>Georgiev, Georgiy P. and Varshavsky, Alexandr Ja., el al. (1974) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201216-124001838">On the Structural Organization of the Transcriptional Unit in Animal Chromosomes</a>; Cold Spring Harbor Symposia on Quantitative Biology; Vol. 38; 869-884; <a href="https://doi.org/10.1101/sqb.1974.038.01.089">10.1101/sqb.1974.038.01.089</a></li> <li>Varshavsky, A. J. and Ilyin, Yu. V., el al. (1973) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210317-085119478">Long molecules of free DNA in the sheared chromatin preparation</a>; Molecular Biology Reports; Vol. 1; No. 4; 201-207; <a href="https://doi.org/10.1007/bf00357642">10.1007/bf00357642</a></li> <li>Varshavsky, Alexander J. and Georgiev, Georgii P. (1973) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210317-084722770">Redistribution of histones during unfolding of chromosomal DNA</a>; Molecular Biology Reports; Vol. 1; No. 3; 143-148; <a href="https://doi.org/10.1007/bf00357154">10.1007/bf00357154</a></li> <li>Varshavsky, A. J. and Georgiev, G. P. (1973) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210317-084350197">Arrangement of histones along DNA in chromosomal deoxyribonucleoprotein lacking histone F1</a>; Molecular Biology Reports; Vol. 1; No. 2; 87-92; <a href="https://doi.org/10.1007/bf00357586">10.1007/bf00357586</a></li> <li>Varshavsky, A. J. and Georgiev, G. P. (1972) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201202-154043213">Clustered arrangement of histones F2a1 and F3 along DNA in chromosomal deoxyribonucleoproteins</a>; Biochimica et Biophysica Acta; Vol. 281; No. 4; 669-674; <a href="https://doi.org/10.1016/0005-2787(72)90166-9">10.1016/0005-2787(72)90166-9</a></li> <li>Varshavsky, A. Ya. and Ilyin, Yu. V., el al. (1971) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201202-154043608">Collapse of extended deoxyribonucleoprotein molecules upon increase of the ionic strength of solution</a>; Biochimica et Biophysica Acta; Vol. 246; No. 3; 583-588; <a href="https://doi.org/10.1016/0005-2787(71)90797-0">10.1016/0005-2787(71)90797-0</a></li> </ul>