<h1>Troian, Sandra</h1> <h2>Article from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Kaifu, Hiroki and Troian, Sandra M., el al. (2024) <a href="https://authors.library.caltech.edu/records/mtxxj-cyh44">How caged motion in the contact layer enhances thermal tunneling across a liquid/solid interface</a>; Physical Review Research; Vol. 6; No. 3; 033123; <a href="https://doi.org/10.1103/physrevresearch.6.033123">10.1103/physrevresearch.6.033123</a></li> <li>Chang, Yi Hua and Troian, Sandra M. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230125-514282300.4">Thermocapillary Patterning of Highly Uniform Microarrays by Resonant Wavelength Excitation</a>; Physical Review Applied; Vol. 18; No. 6; Art. No. 064090; <a href="https://doi.org/10.1103/physrevapplied.18.064090">10.1103/physrevapplied.18.064090</a></li> <li>Zhou, Chengzhe and Troian, Sandra M. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210421-153153016">Multiplicity of Inertial Self-Similar Conical Shapes in an Electrified Liquid Metal</a>; Physical Review Applied; Vol. 15; No. 4; Art. No. 044001; <a href="https://doi.org/10.1103/physrevapplied.15.044001">10.1103/physrevapplied.15.044001</a></li> <li>White, Nicholas C. and Troian, Sandra M., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200427-081235424">Robust numerical computation of the 3D scalar potential field of the cubic Galileon gravity model at solar system scales</a>; Physical Review D; Vol. 102; No. 2; Art. No. 024033; <a href="https://doi.org/10.1103/PhysRevD.102.024033">10.1103/PhysRevD.102.024033</a></li> <li>Albertson, Theodore G. and Troian, Sandra M. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191014-142854756">Electrified cone formation in perfectly conducting viscous liquids: Self-similar growth irrespective of Reynolds number</a>; Physics of Fluids; Vol. 31; No. 10; Art. No. 102103; <a href="https://doi.org/10.1063/1.5123742">10.1063/1.5123742</a></li> <li>White, Nicholas C. and Troian, Sandra M. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190426-090851313">Why Capillary Flows in Slender Triangular Grooves Are So Stable Against Disturbances</a>; Physical Review Fluids; Vol. 4; No. 5; Art. No. 054003; <a href="https://doi.org/10.1103/PhysRevFluids.4.054003">10.1103/PhysRevFluids.4.054003</a></li> <li>Fiedler, Kevin R. and McLeod, Euan, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181029-102032102">Differential Colorimetry Measurements of Fluctuation Growth in Nanofilms Exposed to Large Surface Thermal Gradients</a>; Journal of Applied Physics; Vol. 125; No. 6; Art. No. 065303; <a href="https://doi.org/10.1063/1.5051456">10.1063/1.5051456</a></li> <li>Zhou, Chengzhe and Troian, Sandra M. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181029-101213559">Self-similar cuspidal formation by runaway thermocapillary forces in thin liquid films</a>; New Journal of Physics; Vol. 21; No. 1; Art. No. 013018; <a href="https://doi.org/10.1088/1367-2630/aaf51d">10.1088/1367-2630/aaf51d</a></li> <li>Fiedler, Kevin R. and Troian, Sandra M. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161129-105518561">Early time instability in nanofilms exposed to a large transverse thermal gradient: Improved image and thermal analysis</a>; Journal of Applied Physics; Vol. 120; No. 20; Art. No. 205303; <a href="https://doi.org/10.1063/1.4968575">10.1063/1.4968575</a></li> <li>McLeod, Euan and Liu, Yu, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110525-083737887">Experimental Verification of the Formation Mechanism for Pillar Arrays in Nanofilms Subject to Large Thermal Gradients</a>; Physical Review Letters; Vol. 106; No. 17; Art. No. 175501; <a href="https://doi.org/10.1103/PhysRevLett.106.175501">10.1103/PhysRevLett.106.175501</a></li> <li>Liu, Nan and Troian, Sandra M. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110317-130412494">Influence of gas rarefaction on the lateral resolution achievable by thermocapillary patterning</a>; Applied Physics Letters; Vol. 98; No. 6; Art. No. 063107; <a href="https://doi.org/10.1063/1.3551535">10.1063/1.3551535</a></li> <li>Dietzel, Mathias and Troian, Sandra M. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20101109-094047283">Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient</a>; Journal of Applied Physics; Vol. 108; No. 7; 074308; <a href="https://doi.org/10.1063/1.3475516">10.1063/1.3475516</a></li> <li>Darhuber, Anton A. and Valentino, Joseph P., el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100513-134653377">Planar digital nanoliter dispensing system based on thermocapillary actuation</a>; Lab on a Chip; Vol. 10; No. 8; 1061-1071; <a href="https://doi.org/10.1039/b921759b">10.1039/b921759b</a></li> <li>Dietzel, Mathias and Troian, Sandra M. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20090908-083702409">Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses</a>; Physical Review Letters; Vol. 103; No. 7; 074501; <a href="https://doi.org/10.1103/PhysRevLett.103.074501">10.1103/PhysRevLett.103.074501</a></li> <li>Davis, Jeffrey M. and Kataoka, Dawn E., el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DAVpof06">Transient dynamics and structure of optimal excitations in thermocapillary spreading: Precursor film model</a>; Physics of Fluids; Vol. 18; No. 9; Art. No. 092101; <a href="https://doi.org/10.1063/1.2345372">10.1063/1.2345372</a></li> <li>Priezjev, Nikolai V. and Troian, Sandra M. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:PRIjfm06">Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions</a>; Journal of Fluid Mechanics; Vol. 554; 25-46; <a href="https://doi.org/10.1017/S0022112006009086">10.1017/S0022112006009086</a></li> <li>Dussaud, Anne D. and Matar, Omar K., el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DUSjfm05">Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment</a>; Journal of Fluid Mechanics; Vol. 544; 23-51; <a href="https://doi.org/10.1017/S002211200500621X">10.1017/S002211200500621X</a></li> <li>Davis, Jeffrey M. and Troian, Sandra M. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DAVpof05">Generalized linear stability of noninertial coating flows over topographical features</a>; Physics of Fluids; Vol. 17; No. 7; Art. No. 072103; <a href="https://doi.org/10.1063/1.1945627">10.1063/1.1945627</a></li> <li>Valentino, Joseph P. and Troian, Sandra M., el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VALapl05">Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide</a>; Applied Physics Letters; Vol. 86; No. 18; Art. No. 184101; <a href="https://doi.org/10.1063/1.1922075">10.1063/1.1922075</a></li> <li>Priezjev, Nikolai V. and Darhuber, Anton A., el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:PRIpre05">Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations</a>; Physical Review E; Vol. 71; No. 4; Art. No. 041608; <a href="https://doi.org/10.1103/PhysRevE.71.041608">10.1103/PhysRevE.71.041608</a></li> <li>Chen, Jian Z. and Troian, Sandra M., el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHEjap05">Effect of contact angle hysteresis on thermocapillary droplet actuation</a>; Journal of Applied Physics; Vol. 97; No. 1; Art. No. 014906; <a href="https://doi.org/10.1063/1.1819979">10.1063/1.1819979</a></li> <li>Darhuber, Anton A. and Troian, Sandra M. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARarfm05">Principles of microfluidic actuation by modulation of surface stresses</a>; Annual Review of Fluid Mechanics; Vol. 37; 425-455; <a href="https://doi.org/10.1146/annurev.fluid.36.050802.122052">10.1146/annurev.fluid.36.050802.122052</a></li> <li>Chen, Jian Z. and Darhuber, Anton A., el al. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHEloac04">Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation</a>; Lab on a Chip; Vol. 4; No. 5; 473-480; <a href="https://doi.org/10.1039/b315815b">10.1039/b315815b</a></li> <li>Davis, Jeffrey M. and Troian, Sandra M. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DAVpre04">Influence of boundary slip on the optimal excitations in thermocapillary driven spreading</a>; Physical Review E; Vol. 70; No. 4; Art. No. 046309; <a href="https://doi.org/10.1103/PhysRevE.70.046309">10.1103/PhysRevE.70.046309</a></li> <li>Priezjev, Nikolai V. and Troian, Sandra M. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:PRIprl04">Molecular Origin and Dynamic Behavior of Slip in Sheared Polymer Films</a>; Physical Review Letters; Vol. 92; No. 1; Art. No. 018302; <a href="https://doi.org/10.1103/PhysRevLett.92.018302">10.1103/PhysRevLett.92.018302</a></li> <li>Fischer, Benjamin J. and Troian, Sandra M. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:FISpof03">Thinning and disturbance growth in liquid films mobilized by continuous surfactant delivery</a>; Physics of Fluids; Vol. 15; No. 12; 3837-3845; <a href="https://doi.org/10.1063/1.1623489">10.1063/1.1623489</a></li> <li>Darhuber, Anton A. and Valentino, Jospeh P., el al. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:VALjmems03">Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays</a>; Journal of Microelectromechanical Systems; Vol. 12; No. 6; 873-879; <a href="https://doi.org/10.1109/JMEMS.2003.820267">10.1109/JMEMS.2003.820267</a></li> <li>Miller, Scott M. and Troian, Sandra M., el al. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MILapl03">Photoresist-free printing of amorphous silicon thin-film transistors</a>; Applied Physics Letters; Vol. 83; No. 15; 3207-3209; <a href="https://doi.org/10.1063/1.1618364">10.1063/1.1618364</a></li> <li>Davis, Jeffrey M. and Troian, Sandra M. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DAVpof03">On a generalized approach to the linear stability of spatially nonuniform thin film flows</a>; Physics of Fluids; Vol. 15; No. 5; 1344-1347; <a href="https://doi.org/10.1063/1.1564094">10.1063/1.1564094</a></li> <li>Darhuber, Anton A. and Davis, Jeffrey M., el al. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARpof03">Thermocapillary actuation of liquid flow on chemically patterned surfaces</a>; Physics of Fluids; Vol. 15; No. 5; 1295-1304</li> <li>Darhuber, Anton A. and Valentino, Joseph P., el al. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARapl03">Microfluidic actuation by modulation of surface stresses</a>; Applied Physics Letters; Vol. 82; No. 4; 657-659; <a href="https://doi.org/10.1063/1.1537512">10.1063/1.1537512</a></li> <li>Davis, Jeffrey M. and Troian, Sandra M. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DAVpre03">Influence of attractive van der Waals interactions on the optimal excitations in thermocapillary-driven spreading</a>; Physical Review E; Vol. 67; No. 1; Art. No. 016308; <a href="https://doi.org/10.1103/PhysRevE.67.016308">10.1103/PhysRevE.67.016308</a></li> <li>Fischer, Benjamin J. and Troian, Sandra M. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:FISpre03">Growth and decay of localized disturbances on a surfactant-coated spreading film</a>; Physical Review E; Vol. 67; No. 1; Art. No. 016309; <a href="https://doi.org/10.1103/PhysRevE.67.016309">10.1103/PhysRevE.67.016309</a></li> <li>Miller, Scott M. and Troian, Sandra M., el al. (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MILjvstb03">Direct printing of polymer microstructures on flat and spherical surfaces using a letterpress technique</a>; Journal of Vacuum Science and Technology B; Vol. 20; No. 6; 2320-2327; <a href="https://doi.org/10.1116/1.1520554">10.1116/1.1520554</a></li> <li>Darhuber, Anton A. and Troian, Sandra M., el al. (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARjap02">Generation of high-resolution surface temperature distributions</a>; Journal of Applied Physics; Vol. 91; No. 9; 5686-5693; <a href="https://doi.org/10.1063/1.1465506">10.1063/1.1465506</a></li> <li>Darhuber, Anton A. and Troian, Sandra M., el al. (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARjap01">Physical mechanisms governing pattern fidelity in microscale offset printing</a>; Journal of Applied Physics; Vol. 90; No. 7; 3602-3609; <a href="https://doi.org/10.1063/1.1389080">10.1063/1.1389080</a></li> <li>Darhuber, Anton A. and Troian, Sandra M., el al. (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARpre01">Dynamics of capillary spreading along hydrophilic microstripes</a>; Physical Review E; Vol. 64; No. 3; Art. No. 031603; <a href="https://doi.org/10.1103/PhysRevE.64.031603">10.1103/PhysRevE.64.031603</a></li> <li>Darhuber, Anton A. and Troian, Sandra M., el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARjap00b">Selective dip-coating of chemically micropatterned surfaces</a>; Journal of Applied Physics; Vol. 88; No. 9; 5119-5126; <a href="https://doi.org/10.1063/1.1317238">10.1063/1.1317238</a></li> <li>Cuk, Tanja and Troian, Sandra M., el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CUKapl00">Using convective flow splitting for the direct printing of fine copper lines</a>; Applied Physics Letters; Vol. 77; No. 13; 2063-2065; <a href="https://doi.org/10.1063/1.1311954">10.1063/1.1311954</a></li> <li>Darhuber, Anton A. and Troian, Sandra M., el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DARjap00a">Morphology of liquid microstructures on chemically patterned surfaces</a>; Journal of Applied Physics; Vol. 87; No. 11; 7768-7775; <a href="https://doi.org/10.1063/1.373452">10.1063/1.373452</a></li> <li>Matar, Omar K. and Troian, Sandra M. (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MATpof99">The development of transient fingering patterns during the spreading of surfactant coated films</a>; Physics of Fluids; Vol. 11; No. 11; 3232-3246; <a href="https://doi.org/10.1063/1.870185">10.1063/1.870185</a></li> <li>Matar, Omar K. and Troian, Sandra M. (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MATchaos99">Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures</a>; Chaos; Vol. 9; No. 1; 141-153; <a href="https://doi.org/10.1063/1.166385">10.1063/1.166385</a></li> <li>Dussaud, Anne D. and Troian, Sandra M., el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DUSpof98b">Fluorescence visualization of a convective instability which modulates the spreading of volatile surface films</a>; Physics of Fluids; Vol. 10; No. 7; 1588-1596; <a href="https://doi.org/10.1063/1.869678">10.1063/1.869678</a></li> <li>Matar, Omar K. and Troian, Sandra M. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MATpof98">Growth of non-modal transient structures during the spreading of surfactant coated films</a>; Physics of Fluids; Vol. 10; No. 5; 1234-1236; <a href="https://doi.org/10.1063/1.869645">10.1063/1.869645</a></li> <li>Dussaud, Anne D. and Troian, Sandra M. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DUSpof98a">Dynamics of spontaneous spreading with evaporation on a deep fluid layer</a>; Physics of Fluids; Vol. 10; No. 1; 23-38; <a href="https://doi.org/10.1063/1.869546">10.1063/1.869546</a></li> <li>Matar, Omar K. and Troian, Sandra M. (1997) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MATpof97">Linear stability analysis of an insoluble surfactant monolayer spreading on a thin liquid film</a>; Physics of Fluids; Vol. 9; No. 12; 3645-3657; <a href="https://doi.org/10.1063/1.869502">10.1063/1.869502</a></li> <li>Troian, Sandra M. (1993) <a href="https://resolver.caltech.edu/CaltechAUTHORS:TROprl93">Coalescence induced domain growth near a wall during spinodal decomposition</a>; Physical Review Letters; Vol. 71; No. 9; 1399-1402; <a href="https://doi.org/10.1103/PhysRevLett.71.1399">10.1103/PhysRevLett.71.1399</a></li> <li>Carles, P. and Troian, S. M., el al. (1990) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CARjpcm90">Hydrodynamic fingering instability of driven wetting films: hindrance by diffusion</a>; Journal of Physics: Condensed Matter; Vol. 2; No. Supple; SA477-SA482; <a href="https://doi.org/10.1088/0953-8984/2/S/076">10.1088/0953-8984/2/S/076</a></li> <li>Troian, S. M. and Herbolzheimer, E., el al. (1990) <a href="https://resolver.caltech.edu/CaltechAUTHORS:TROprl90">Model for the fingering instability of spreading surfactant drops</a>; Physical Review Letters; Vol. 65; No. 3; 333-336; <a href="https://doi.org/10.1103/PhysRevLett.65.333">10.1103/PhysRevLett.65.333</a></li> <li>Troian, S. M. and Wu, X. L., el al. (1989) <a href="https://resolver.caltech.edu/CaltechAUTHORS:TROprl89">Fingering instability in thin wetting films</a>; Physical Review Letters; Vol. 62; No. 13; 1496-1500; <a href="https://doi.org/10.1103/PhysRevLett.62.1496">10.1103/PhysRevLett.62.1496</a></li> <li>Mermin, N. D. and Troian, Sandra M. (1985) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MERprl85">Mean-Field Theory of Quasicrystalline Order</a>; Physical Review Letters; Vol. 54; No. 14; 1524-1527; <a href="https://doi.org/10.1103/PhysRevLett.54.1524">10.1103/PhysRevLett.54.1524</a></li> </ul>