Schwab, Keith
- Katti, Raj and Arora, Harpreet Singh, et el. (2023) Hot Carrier Thermalization and Josephson Inductance Thermometry in a Graphene-Based Microwave Circuit; Nano Letters; Vol. 23; No. 10; 4136-4141; 10.1021/acs.nanolett.2c04791
- Rochman, Jake and Xie, Tian, et el. (2023) Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators; Nature Communications; Vol. 14; Art. No. 1153; PMCID PMC9977906; 10.1038/s41467-023-36799-0
- Rochman, Jake and Bartholomew, John G., et el. (2019) Toward Microwave-to-Optical Conversion using Erbium Doped Crystals and Integrated Resonators; ISBN 978-1-943580-57-6; CLEO: QELS_Fundamental Science 2019; Art. No. FM1A.7; 10.1364/cleo_qels.2019.fm1a.7
- Erkmen, Baris I. and Shapiro, Jeffrey H., et el. (2019) Quantum Communication, Sensing and Measurement in Space; 10.26206/PTRZ-DA93
- Mauser, Kelly W. and Kim, Seyoon, et el. (2017) Resonant Thermoelectric Nanophotonics; Nature Nanotechnology; Vol. 12; No. 8; 770-775; 10.1038/NNANO.2017.87
- Singh, S. and De Lorenzo, L. A., et el. (2017) Detecting continuous gravitational waves with superfluid ^4He; New Journal of Physics; Vol. 19; Art. No. 073023; 10.1088/1367-2630/aa78cb
- De Lorenzo, L. A. and Schwab, K. C. (2017) Ultra-High Q Acoustic Resonance in Superfluid ^4He; Journal of Low Temperature Physics; Vol. 186; No. 3; 233-240; 10.1007/s10909-016-1674-x
- Lei, C. U. and Weinstein, A. J., et el. (2016) Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit; Physical Review Letters; Vol. 117; No. 10; Art. No. 100801; 10.1103/PhysRevLett.117.100801
- Habib, Salman and Bhattacharya, Tanmoy, et el. (2016) Nonlinear Quantum Dynamics; 10.48550/arXiv.0505046
- Kaltenbaek, Rainer and Schwab, Keith C. (2015) Macroscopic quantum resonators (MAQRO): 2015 Update; EPJ Quantum Technology; Vol. 2016; No. 3; Art. No. 5; 10.1140/epjqt/s40507-016-0043-7
- Katz, B. N. and Blencowe, M. P., et el. (2015) Mesoscopic mechanical resonators as quantum noninertial reference frames; Physical Review A; Vol. 92; No. 4; Art. No. 042104; 10.1103/PhysRevA.92.042104
- Wollman, E. E. and Lei, C. U., et el. (2015) Quantum squeezing of motion in a mechanical resonator; Science; Vol. 349; No. 6251; 952-955; 10.1126/science.aac5138
- Weinstein, A. J. and Lei, C. U., et el. (2014) Observation and interpretation of motional sideband asymmetry in a quantum electro-mechanical device; Physical Review X; Vol. 4; No. 4; Art. No. 041003; 10.1103/PhysRevX.4.041003
- Suh, J. and Weinstein, A. J., et el. (2014) Mechanically Detecting and Avoiding the Quantum Fluctuations of a Microwave Field; Science; Vol. 344; No. 6189; 1262-1265; 10.1126/science.1253258
- Steinke, S. K. and Singh, S., et el. (2013) Quantum backaction in spinor-condensate magnetometry; Physical Review A; Vol. 88; No. 6; Art. No. 063809; 10.1103/PhysRevA.88.063809
- De Lorenzo, L. A. and Schwab, K. C. (2013) Superfluid Optomechanics: Coupling of a Superfluid to a Superconducting Condensate; New Journal of Physics; Vol. 16; Art. No. 113020; 10.1088/1367-2630/16/11/113020
- Fong, Kin Chung and Wollman, Emma E., et el. (2013) Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature; Physical Review X; Vol. 3; No. 4; Art. No. 041008; 10.1103/PhysRevX.3.041008
- Truitt, P. A. and Hertzberg, J. B., et el. (2013) Linear and nonlinear coupling between transverse modes of a nanomechanical resonator; Journal of Applied Physics; Vol. 114; No. 11; Art. No. 114307; 10.1063/1.4821273
- Steinke, Steven K. and Schwab, K. C., et el. (2013) Optomechanical backaction-evading measurement without parametric instability; Physical Review A; Vol. 88; No. 2; Art. No. 023838; 10.1103/PhysRevA.88.023838
- Suh, J. and Weinstein, A. J., et el. (2013) Optomechanical effects of two-level systems in a back-action evading measurement of micro-mechanical motion; Applied Physics Letters; Vol. 103; No. 5; Art. No. 052604; 10.1063/1.4816428
- Suh, J. and Shaw, M.D., et el. (2012) Thermally Induced Parametric Instability in a Back-Action Evading Measurement of a Micromechanical Quadrature near the Zero-Point Level; Nano Letters; Vol. 12; No. 12; 6260-6265; 10.1021/nl303353r
- Kaltenbaek, Rainer and Hechenblaikner, Gerald, et el. (2012) Macroscopic quantum resonators (MAQRO) - Testing quantum and gravitational physics with massive mechanical resonators; Experimental Astronomy; Vol. 34; No. 2; 123-164; 10.1007/s10686-012-9292-3
- Fong, K. C. and Schwab, K. C. (2012) Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures; Physical Review X; Vol. 2; No. 3; Art. No. 031006; 10.1103/PhysRevX.2.031006
- Aspelmeyer, Markus and Meystre, Pierre, et el. (2012) Quantum optomechanics; Physics Today; Vol. 65; No. 7; 29-35; 10.1063/PT.3.1640
- Steinke, S. K. and Singh, S., et el. (2011) Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator; Physical Review A; Vol. 84; No. 2; Art. No. 023841; 10.1103/PhysRevA.84.023841
- Suh, Junho and LaHaye, Matthew D., et el. (2010) Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator; Nano Letters; Vol. 10; No. 10; 3990-3994; 10.1021/nl101844r
- Hertzberg, J. B. and Rocheleau, T., et el. (2010) Back-action-evading measurements of nanomechanical motion; Nature Physics; Vol. 6; No. 3; 213-217; 10.1038/nphys1479
- Rocheleau, T. and Ndukum, T., et el. (2010) Preparation and detection of a mechanical resonator near the ground state of motion; Nature; Vol. 463; No. 7277; 72-75; 10.1038/nature08681
- Gröblacher, Simon and Hertzberg, Jared B., et el. (2009) Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity; Nature Physics; Vol. 5; No. 7; 485-488; 10.1038/nphys1301
- LaHaye, M. D. and Suh, J., et el. (2009) Nanomechanical measurements of a superconducting qubit; Nature; Vol. 459; No. 7249; 960-964; 10.1038/nature08093
- Woolley, M. J. and Doherty, A. C., et el. (2008) Nanomechanical squeezing with detection via a microwave cavity; Physical Review A; Vol. 78; No. 6; Art. No. 062303; 10.1103/PhysRevA.78.062303
- LaHaye, Matt and Suh, Junho, et el. (2008) Coupling a nanomechanical resonator to a Cooper-pair-box qubit; ISBN 978-1-55752-859-9; 2008 Conference on Lasers and Electro-Optics; Art. No. JMA3; 10.1109/CLEO.2008.4551956
- Milburn, G. J. and Woolley, M. J., et el. (2008) Superconducting microwave cavities as quantum nanomechanical transducers; ISBN 978-1-55752-859-9; 2008 Conference on Lasers and Electro-Optics; Art. No. JMA2; 10.1109/CLEO.2008.4551955
- Kemiktarak, U. and Ndukum, T., et el. (2007) Radio-frequency scanning tunnelling microscopy; Nature; Vol. 450; No. 7166; 85-88; 10.1038/nature06238
- Truitt, Patrick A. and Hertzberg, Jared B., et el. (2007) Efficient and Sensitive Capacitive Readout of Nanomechanical Resonator Arrays; Nano Letters; Vol. 7; No. 1; 120-126; 10.1021/nl062278g
- Böhm, H. R. and Gigan, S., et el. (2006) High reflectivity high-Q micromechanical Bragg mirror; Applied Physics Letters; Vol. 89; No. 22; Art. No. 223101; 10.1063/1.2393000
- Schwab, Keith (2006) Quantum physics: Information on heat; Nature; Vol. 444; No. 7116; 161-162; 10.1038/444161a
- Gigan, S. and Böhm, H. R., et el. (2006) Self-cooling of a micromirror by radiation pressure; Nature; Vol. 444; No. 7115; 67-70; 10.1038/nature05273
- Naik, A. and Buu, O., et el. (2006) Cooling a nanomechanical resonator with quantum back-action; Nature; Vol. 443; No. 7108; 193-196; 10.1038/nature05027
- Stick, D. and Hensinger, W. K., et el. (2006) Ion trap in a semiconductor chip; Nature Physics; Vol. 2; No. 1; 36-39; 10.1038/nphys171
- Schwab, K. C. and Blencowe, M. P., et el. (2005) Comment on "Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators"; Physical Review Letters; Vol. 95; No. 24; Art. no. 248901; 10.1103/PhysRevLett.95.248901
- Irish, E. K. and Gea-Banacloche, J., et el. (2005) Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator; Physical Review B; Vol. 72; No. 19; Art. No. 195410; 10.1103/PhysRevB.72.195410
- Hensinger, W. K. and Utami, D. W., et el. (2005) Ion trap transducers for quantum electromechanical oscillators; Physical Review A; Vol. 72; No. 4; Art. No. 041405; 10.1103/PhysRevA.72.041405
- Fon, W. Chung and Schwab, Keith C., et el. (2005) Nanoscale, Phonon-Coupled Calorimetry with Sub-Attojoule/Kelvin Resolution; Nano Letters; Vol. 5; No. 10; 1968-1971; 10.1021/nl051345o
- Schwab, Keith C. and Roukes, Michael L. (2005) Putting mechanics into quantum mechanics; Physics Today; Vol. 58; No. 7; 36-42; 10.1063/1.2012461
- Ruskov, Rusko and Schwab, Keith, et el. (2005) Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback; Physical Review B; Vol. 71; No. 23; Art. No. 235407; 10.1103/PhysRevB.71.235407
- Pelekhov, Denis V. and Selcu, Camelia, et el. (2005) Light-free magnetic resonance force microscopy for studies of electron spin polarized systems; Journal of Magnetism and Magnetic Materials; Vol. 286; 324-328; 10.1016/j.jmmm.2004.09.088
- Ruskov, Rusko and Schwab, Keith, et el. (2005) Quantum Nondemolition Squeezing of a Nanomechanical Resonator; IEEE Transactions On Nanotechnology; Vol. 4; No. 1; 132-140; 10.1109/TNANO.2004.840171
- Florez, S. H. and Dreyer, M., et el. (2004) Magnetoresistive effects in planar NiFe nanoconstrictions; Journal of Applied Physics; Vol. 95; No. 11; Art. No. 6720; 10.1063/1.1682831
- Hopkins, Asa and Jacobs, Kurt A., et el. (2004) Cooling a nanomechanical resonator using feedback: toward quantum behavior; ISBN 0-8194-5169-X; Device and Process Technologies for MEMS, Microelectronics, and Photonics III; 173-183; 10.1117/12.522091
- LaHaye, M. D. and Buu, O., et el. (2004) Approaching the Quantum Limit of a Nanomechanical Resonator; Science; Vol. 304; No. 5667; 74-77; 10.1126/science.1094419
- Hutchinson, A. B. and Truitt, P. A., et el. (2004) Dissipation in nanocrystalline-diamond nanomechanical resonators; Applied Physics Letters; Vol. 84; No. 6; 972-974; 10.1063/1.1646213
- Hopkins, Asa and Jacobs, Kurt, et el. (2003) Feedback cooling of a nanomechanical resonator; Physical Review B; Vol. 68; No. 23; Art. No. 235328; 10.1103/PhysRevB.68.235328
- Irish, E. K. and Schwab, K. (2003) Quantum measurement of a coupled nanomechanical resonator–Cooper-pair box system; Physical Review B; Vol. 68; No. 15; Art. No. 155311; 10.1103/PhysRevB.68.155311
- Schwab, Keith (2003) Quantum Electro-Mechanical Systems - Recipe to make a mechanical device interfere with itself; ISBN 978-1-4020-1665-3; New Directions in Mesoscopic Physics (Towards Nanoscience); 245-258; 10.1007/978-94-007-1021-4_10
- Fon, W. and Schwab, K. C., et el. (2002) Phonon scattering mechanisms in suspended nanostructures from 4 to 40 K; Physical Review B; Vol. 66; No. 4; Art. No. 045302; 10.1103/PhysRevB.66.045302
- Armour, A. D. and Blencowe, M. P., et el. (2002) Mechanical Lamb-shift analogue for the Cooper-pair box; Physica B; Vol. 316-31; 406-407; 10.1016/S0921-4526(02)00527-6
- Armour, A. D. and Blencowe, M. P., et el. (2002) Entanglement and Decoherence of a Micromechanical Resonator via Coupling to a Cooper-Pair Box; Physical Review Letters; Vol. 88; No. 14; Art. No. 148301; 10.1103/PhysRevLett.88.148301
- Schwab, K. (2002) Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor; Applied Physics Letters; Vol. 80; No. 7; Art. No. 1276; 10.1063/1.1449533
- Schwab, K. and Arlett, J. L., et el. (2001) Thermal conductance through discrete quantum channels; Physica E; Vol. 9; No. 1; 60-68; 10.1016/S1386-9477(00)00178-8
- Schwab, Keith (2001) Quantum measurement with nanomechanical systems; ISBN 1-58949-013-4; Proceedings of the 1st International Conference on Experimental Implementation of Quantum Computation; 189-194
- Schwab, K. and Fon, W., et el. (2000) Quantized thermal conductance: measurements in nanostructures; Physica B; Vol. 280; No. 1-4; 458-459; 10.1016/S0921-4526(99)01835-9
- Schwab, K. and Henriksen, E. A., et el. (2000) Measurement of the quantum of thermal conductance; Nature; Vol. 404; No. 6781; 974-977; 10.1038/35010065
- Schwab, K. and Bruckner, N., et el. (1998) The Superfluid ^4He Analog of the RF SQUID; Journal of Low Temperature Physics; Vol. 110; No. 5; 1043-1104; 10.1023/A:1022364200234
- Schwab, K. and Bruckner, N., et el. (1998) Detection of absolute rotation using superfluid ^4He; Low Temperature Physics; Vol. 24; No. 2; 102-104; 10.1063/1.593549
- Backhaus, S. and Schwab, K., et el. (1997) Thermoviscous effects in steady and oscillating flow of superfluid ^4He: Experiments; Journal of Low Temperature Physics; Vol. 109; No. 3-4; 527-546; 10.1007/BF02396910
- Schwab, Keith and Bruckner, Niels, et el. (1997) Detection of the Earth's rotation using superfluid phase coherence; Nature; Vol. 386; No. 6625; 585-587; 10.1038/386585a0
- Schwab, K. and Steinhauer, J., et el. (1997) Phase-slip memory effects in dissipation-free superflow; Physical Review B; Vol. 55; No. 13; 8094-8097; 10.1103/PhysRevB.55.8094
- Schwab, Keith and Steinhauer, J., et el. (1996) Fabrication of a silicon-based superfluid oscillator; Journal of Microelectromechanical Systems; Vol. 5; No. 3; 180-186; 10.1109/84.536624