<h1>Mazumdar, Eric</h1> <h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Chen, Zaiwei and Zhang, Kaiqing, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-204015123">A Finite-Sample Analysis of Payoff-Based Independent Learning in Zero-Sum Stochastic Games</a></li> <li>Hardt, Moritz and Mazumdar, Eric, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-204028845">Algorithmic Collective Action in Machine Learning</a></li> <li>Maheshwari, Chinmay and Sasty, S. Shankar, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-204025426">Convergent First-Order Methods for Bi-level Optimization and Stackelberg Games</a></li> <li>Badithela, Apurva and Graebener, Josefine B., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221219-234102223">Synthesizing Reactive Test Environments for Autonomous Systems: Testing Reach-Avoid Specifications with Multi-Commodity Flows</a>; <a href="https://doi.org/10.48550/arXiv.2210.10304">10.48550/arXiv.2210.10304</a></li> <li>Zrnic, Tijana and Mazumdar, Eric (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221220-221907545">A Note on Zeroth-Order Optimization on the Simplex</a>; <a href="https://doi.org/10.48550/arXiv.2208.01185">10.48550/arXiv.2208.01185</a></li> <li>Xu, Pan and Zheng, Hongkai, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212437915">Langevin Monte Carlo for Contextual Bandits</a>; Proceedings of Machine Learning Research; Vol. 162; 24830-24850; <a href="https://doi.org/10.48550/arXiv.arXiv.2206.11254">10.48550/arXiv.arXiv.2206.11254</a></li> <li>Maheshwari, Chinmay and Mazumdar, Eric, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220715-171641949">Decentralized, Communication- and Coordination-free Learning in Structured Matching Markets</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2206.02344">10.48550/arXiv.arXiv.2206.02344</a></li> <li>Zrnic, Tijana and Mazumdar, Eric, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213717702">Who Leads and Who Follows in Strategic Classification?</a>; <a href="https://doi.org/10.48550/arXiv.2106.12529">10.48550/arXiv.2106.12529</a></li> <li>Maheshwari, Chinmay and Chiu, Chih-Yuan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213714292">Zeroth-Order Methods for Convex-Concave Minmax Problems: Applications to Decision-Dependent Risk Minimization</a>; <a href="https://doi.org/10.48550/arXiv.2106.09082">10.48550/arXiv.2106.09082</a></li> <li>Yu, Yaodong and Lin, Tianyi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213710817">Fast Distributionally Robust Learning with Variance Reduced Min-Max Optimization</a>; <a href="https://doi.org/10.48550/arXiv.2104.13326">10.48550/arXiv.2104.13326</a></li> <li>Mazumdar, Eric and Westenbroek, Tyler, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215409">High Confidence Sets for Trajectories of Stochastic Time-Varying Nonlinear Systems</a>; ISBN 978-1-7281-7447-1; 2020 59th IEEE Conference on Decision and Control (CDC); 4275-4280; <a href="https://doi.org/10.1109/CDC42340.2020.9304491">10.1109/CDC42340.2020.9304491</a></li> <li>Westenbroek, Tyler and Mazumdar, Eric, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215502">Adaptive Control for Linearizable Systems Using On-Policy Reinforcement Learning</a>; ISBN 978-1-7281-7447-1; 2020 59th IEEE Conference on Decision and Control (CDC); 118-125; <a href="https://doi.org/10.1109/CDC42340.2020.9304242">10.1109/CDC42340.2020.9304242</a></li> <li>Rubies-Royo, Vicenç and Mazumdar, Eric, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215578">Expert Selection in High-Dimensional Markov Decision Processes</a>; ISBN 978-1-7281-7447-1; 2020 59th IEEE Conference on Decision and Control (CDC); 3604-3610; <a href="https://doi.org/10.1109/CDC42340.2020.9303788">10.1109/CDC42340.2020.9303788</a></li> <li>Chasnov, Benjamin and Ratliff, Lillian, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210907-195235166">Convergence Analysis of Gradient-Based Learning in Continuous Games</a>; Proceedings of Machine Learning Research; Vol. 115; 935-944</li> <li>Westenbroek, Tyler and Fridovich-Keil, David, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215650">Feedback Linearization for Uncertain Systems via Reinforcement Learning</a>; ISBN 978-1-7281-7395-5; 2020 IEEE International Conference on Robotics and Automation (ICRA); 1364-1371; <a href="https://doi.org/10.1109/ICRA40945.2020.9197158">10.1109/ICRA40945.2020.9197158</a></li> <li>Ratliff, Lillian J. and Mazumdar, Eric (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215724">Inverse Risk-Sensitive Reinforcement Learning</a>; IEEE Transactions on Automatic Control; Vol. 65; No. 3; 1256-1263; <a href="https://doi.org/10.1109/TAC.2019.2926674">10.1109/TAC.2019.2926674</a></li> <li>Mazumdar, Eric and Pacchiano, Aldo, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-220351518">On Thompson Sampling with Langevin Algorithms</a>; <a href="https://doi.org/10.48550/arXiv.2002.10002">10.48550/arXiv.2002.10002</a></li> <li>Mazumdar, Eric and Ratliff, Lillian J., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210907-200115513">On Gradient-Based Learning in Continuous Games</a>; SIAM Journal on Mathematics of Data Science; Vol. 2; No. 1; 103-131; <a href="https://doi.org/10.1137/18m1231298">10.1137/18m1231298</a></li> <li>Mazumdar, Eric and Ratliff, Lillian J. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215800">Local Nash Equilibria are Isolated, Strict Local Nash Equilibria in 'Almost All' Zero-Sum Continuous Games</a>; ISBN 978-1-7281-1398-2; 2019 IEEE 58th Conference on Decision and Control (CDC); 6899-6904; <a href="https://doi.org/10.1109/CDC40024.2019.9030203">10.1109/CDC40024.2019.9030203</a></li> <li>Mazumdar, Eric and Ratliff, Lillian J., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213700306">Policy-Gradient Algorithms Have No Guarantees of Convergence in Linear Quadratic Games</a>; <a href="https://doi.org/10.48550/arXiv.1907.03712">10.48550/arXiv.1907.03712</a></li> <li>Chasnov, Benjamin and Ratliff, Lillian J., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213656891">Convergence Analysis of Gradient-Based Learning with Non-Uniform Learning Rates in Non-Cooperative Multi-Agent Settings</a>; <a href="https://doi.org/10.48550/arXiv.1906.00731">10.48550/arXiv.1906.00731</a></li> <li>Mazumdar, Eric and Jordan, Michael I., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213653378">On Finding Local Nash Equilibria (and Only Local Nash Equilibria) in Zero-Sum Games</a>; <a href="https://doi.org/10.48550/arXiv.1901.00838">10.48550/arXiv.1901.00838</a></li> <li>Chapman, Margaret P. and Mazumdar, Eric V., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215867">On the Analysis of Cyclic Drug Schedules for Cancer Treatment using Switched Dynamical Systems</a>; ISBN 978-1-5386-1395-5; 2018 IEEE Conference on Decision and Control (CDC); 3503-3509; <a href="https://doi.org/10.1109/CDC.2018.8619490">10.1109/CDC.2018.8619490</a></li> <li>Mazumdar, Eric and Ratliff, Lillian J., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215940">Gradient-based inverse risk-sensitive reinforcement learning</a>; ISBN 978-1-5090-2873-3; 2017 IEEE 56th Annual Conference on Decision and Control (CDC); 5796-5801; <a href="https://doi.org/10.1109/CDC.2017.8264535">10.1109/CDC.2017.8264535</a></li> <li>Mazumdar, Eric and Dong, Roy, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213649911">A Multi-Armed Bandit Approach for Online Expert Selection in Markov Decision Processes</a>; <a href="https://doi.org/10.48550/arXiv.1707.05714">10.48550/arXiv.1707.05714</a></li> <li>Dong, Roy and Mazumdar, Eric, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-213646411">Optimal Causal Imputation for Control</a>; <a href="https://doi.org/10.48550/arXiv.1703.07049">10.48550/arXiv.1703.07049</a></li> <li>Ratliff, Lillian J. and Dowling, Chase, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222215263">To observe or not to observe: Queuing game framework for urban parking</a>; ISBN 978-1-5090-1837-6; 2016 IEEE 55th Conference on Decision and Control (CDC); 5286-5291; <a href="https://doi.org/10.1109/CDC.2016.7799079">10.1109/CDC.2016.7799079</a></li> <li>Calderone, Daniel and Mazumdar, Eric, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210903-222216008">Understanding the impact of parking on urban mobility via routing games on queue-flow networks</a>; <a href="https://doi.org/10.1109/CDC.2016.7799444">10.1109/CDC.2016.7799444</a></li> </ul>