<h1>Lee, Seong Hee</h1> <h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Vahala, K. and Yang, K.-Y., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190506-093824581">Silicon-chip-based Brillouin lasers and soliton microcombs using an integrated ultra-high-Q silica resonator</a>; ISBN 9781943580538; Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019); Art. No. M1D.4; <a href="https://doi.org/10.1364/ofc.2019.m1d.4">10.1364/ofc.2019.m1d.4</a></li> <li>Yang, Q. F. and Lee, S. H., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180119-103020712">Soliton microcomb operation to 778 nm</a>; ISBN 978-1-5090-6579-0; 2017 IEEE Photonics Conference (IPC); 139-140; <a href="https://doi.org/10.1109/IPCon.2017.8116040">10.1109/IPCon.2017.8116040</a></li> <li>Kameel, F. Rifkha and Lee, S. H., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140609-104744673">Polarity and oxidation level of visible absorbers in model organic aerosol</a>; Chemical Physics Letters; Vol. 603; 57-61; <a href="https://doi.org/10.1016/j.cplett.2014.04.033">10.1016/j.cplett.2014.04.033</a></li> <li>Geller, A. S. and Lee, S. H., el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120627-074206046">The creeping motion of a spherical particle normal to a deformable interface</a>; Journal of Fluid Mechanics; Vol. 169; 27-69; <a href="https://doi.org/10.1017/S0022112086000538">10.1017/S0022112086000538</a></li> <li>Lee, S. H. and Leal, L. G. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120627-100920779">Low-Reynolds-number flow past cylindrical bodies of arbitrary cross-sectional shape</a>; Journal of Fluid Mechanics; Vol. 164; 401-427; <a href="https://doi.org/10.1017/S0022112086002616">10.1017/S0022112086002616</a></li> <li>Lee, S. H. and Leal, L. G. (1980) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120720-080629829">Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates</a>; Journal of Fluid Mechanics; Vol. 98; No. 1; 193-224; <a href="https://doi.org/10.1017/S0022112080000109">10.1017/S0022112080000109</a></li> <li>Lee, S. H. and Chadwick, R. S., el al. (1979) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120726-090448676">Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz</a>; Journal of Fluid Mechanics; Vol. 93; No. 4; 705-726; <a href="https://doi.org/10.1017/S0022112079001981">10.1017/S0022112079001981</a></li> </ul>