<h1>Guttman, Mitchell</h1> <h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Sakai, Alexandra and Singh, Gagandeep, el al. (2024) <a href="https://authors.library.caltech.edu/records/hy9vj-3dr12">Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA</a>; Moleclar Therapy - Nucleic Acids; Vol. 35; No. 4; 102331; <a href="https://doi.org/10.1016/j.omtn.2024.102331">10.1016/j.omtn.2024.102331</a></li> <li>Perez, Andrew A. and Goronzy, Isabel N., el al. (2024) <a href="https://authors.library.caltech.edu/records/nskhx-1k517">ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements</a>; Nature Genetics; Vol. 56; 2827–2841; <a href="https://doi.org/10.1038/s41588-024-02000-5">10.1038/s41588-024-02000-5</a></li> <li>Kitchen, Sheila A. and Naragon, Thomas H., el al. (2024) <a href="https://authors.library.caltech.edu/records/8n92k-h7b39">The genomic and cellular basis of biosynthetic innovation in rove beetles</a>; Cell; Vol. 187; No. 14; 1-22; <a href="https://doi.org/10.1016/j.cell.2024.05.012">10.1016/j.cell.2024.05.012</a></li> <li>Bhat, Prashant and Chow, Amy, el al. (2024) <a href="https://authors.library.caltech.edu/records/q1s9m-d2498">Genome organization around nuclear speckles drives mRNA splicing efficiency</a>; Nature; <a href="https://doi.org/10.1038/s41586-024-07429-6">10.1038/s41586-024-07429-6</a></li> <li>Guo, Jimmy K. and Blanco, Mario R., el al. (2024) <a href="https://authors.library.caltech.edu/records/9bxjt-nqd52">Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo</a>; Molecular Cell; Vol. 84; No. 7; 1271-1289.e12; PMCID PMC10997485; <a href="https://doi.org/10.1016/j.molcel.2024.01.026">10.1016/j.molcel.2024.01.026</a></li> <li>Wolin, Erica and Guo, Jimmy K., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230725-706033000.26">SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress</a>; PMCID PMC10274648; <a href="https://doi.org/10.1101/2023.06.05.543769">10.1101/2023.06.05.543769</a></li> <li>Mattick, John S. and Amaral, Paulo P., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230203-893794600.55">Long non-coding RNAs: definitions, functions, challenges and recommendations</a>; Nature Reviews Molecular Cell Biology; Vol. 24; No. 6; 430-447; PMCID PMC10213152; <a href="https://doi.org/10.1038/s41580-022-00566-8">10.1038/s41580-022-00566-8</a></li> <li>Bhat, Prashant and Chow, Amy, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-182623000.46">3D genome organization around nuclear speckles drives mRNA splicing efficiency</a>; <a href="https://doi.org/10.1101/2023.01.04.522632">10.1101/2023.01.04.522632</a></li> <li>Goronzy, Isabel N. and Quinodoz, Sofia A., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230123-451320900.9">Simultaneous mapping of 3D structure and nascent RNAs argues against nuclear compartments that preclude transcription</a>; Cell Reports; Vol. 41; No. 9; Art. No. 111730; PMCID PMC9793828; <a href="https://doi.org/10.1016/j.celrep.2022.111730">10.1016/j.celrep.2022.111730</a></li> <li>Guo, Jimmy K. and Guttman, Mitchell (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221019-344256700.20">Regulatory non-coding RNAs: everything is possible, but what is important?</a>; Nature Methods; Vol. 19; No. 10; 1156-1159; <a href="https://doi.org/10.1038/s41592-022-01629-6">10.1038/s41592-022-01629-6</a></li> <li>Boninsegna, Lorenzo and Yildirim, Asli, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210824-174746931">Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations</a>; Nature Methods; Vol. 19; No. 8; 938-949; <a href="https://doi.org/10.1038/s41592-022-01527-x">10.1038/s41592-022-01527-x</a></li> <li>Quinodoz, Sofia A. and Guttman, Mitchell (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210921-151614850">Essential Roles for RNA in Shaping Nuclear Organization</a>; Cold Spring Harbor Perspectives in Biology; Vol. 14; No. 5; a039719; PMCID PMC9159268; <a href="https://doi.org/10.1101/cshperspect.a039719">10.1101/cshperspect.a039719</a></li> <li>Jachowicz, Joanna W. and Strehle, Mackenzie, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211102-173017796">Xist spatially amplifies SHARP/SPEN recruitment to balance chromosome-wide silencing and specificity to the X chromosome</a>; Nature Structural and Molecular Biology; Vol. 29; No. 3; 239-249; PMCID PMC8969943; <a href="https://doi.org/10.1038/s41594-022-00739-1">10.1038/s41594-022-00739-1</a></li> <li>Guttman, Mitchell (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220422-230105510">How non-coding RNAs shape nuclear structure to regulate gene expression</a>; Biophysical Journal; Vol. 121; No. 3; 167a; <a href="https://doi.org/10.1016/j.bpj.2021.11.1898">10.1016/j.bpj.2021.11.1898</a></li> <li>Quinodoz, Sofia A. and Bhat, Prashant, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220111-225123800">SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding</a>; Nature Protocols; Vol. 17; No. 1; 36-75; <a href="https://doi.org/10.1038/s41596-021-00633-y">10.1038/s41596-021-00633-y</a></li> <li>Arrastia, Mary V. and Jachowicz, Joanna W., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200813-130113364">Single-cell measurement of higher-order 3D genome organization with scSPRITE</a>; Nature Biotechnology; Vol. 40; No. 1; 64-73; <a href="https://doi.org/10.1038/s41587-021-00998-1">10.1038/s41587-021-00998-1</a></li> <li>Markaki, Yolanda and Chong, Johnny Gan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211118-231403494">Xist nucleates local protein gradients to propagate silencing across the X chromosome</a>; Cell; Vol. 184; No. 25; 6174-6192; PMCID PMC8671326; <a href="https://doi.org/10.1016/j.cell.2021.10.022">10.1016/j.cell.2021.10.022</a></li> <li>Quinodoz, Sofia A. and Jachowicz, Joanna W., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200826-110847363">RNA promotes the formation of spatial compartments in the nucleus</a>; Cell; Vol. 184; No. 23; 5775-5790; PMCID PMC9115877; <a href="https://doi.org/10.1016/j.cell.2021.10.014">10.1016/j.cell.2021.10.014</a></li> <li>Bhat, Prashant and Honson, Drew, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210803-140228133">Nuclear compartmentalization as a mechanism of quantitative control of gene expression</a>; Nature Reviews. Molecular Cell Biology; Vol. 22; No. 10; 653-670; <a href="https://doi.org/10.1038/s41580-021-00387-1">10.1038/s41580-021-00387-1</a></li> <li>Takei, Yodai and Yun, Jina, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201207-124413570">Integrated spatial genomics reveals global architecture of single nuclei</a>; Nature; Vol. 590; No. 7845; 344-350; PMCID PMC7878433; <a href="https://doi.org/10.1038/s41586-020-03126-2">10.1038/s41586-020-03126-2</a></li> <li>Banerjee, Abhik K. and Blanco, Mario R., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201008-083809040">SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses</a>; Cell; Vol. 183; No. 5; 1325-1339; PMCID PMC7543886; <a href="https://doi.org/10.1016/j.cell.2020.10.004">10.1016/j.cell.2020.10.004</a></li> <li>Markaki, Yolanda and Chong, Johnny Gan, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201123-130437407">Xist-seeded nucleation sites form local concentration gradients of silencing proteins to inactivate the X-chromosome</a>; <a href="https://doi.org/10.1101/2020.11.22.393546">10.1101/2020.11.22.393546</a></li> <li>Pandya-Jones, Amy and Markaki, Yolanda, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200310-130644860">A protein assembly mediates Xist localization and gene silencing</a>; Nature; Vol. 587; No. 7832; 145-151; PMCID PMC7644664; <a href="https://doi.org/10.1038/s41586-020-2703-0">10.1038/s41586-020-2703-0</a></li> <li>Vangala, Pranitha and Murphy, Rachel, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201012-163632672">High-Resolution Mapping of Multiway Enhancer-Promoter Interactions Regulating Pathogen Detection</a>; Molecular Cell; Vol. 80; No. 2; 359-373; PMCID PMC7572724; <a href="https://doi.org/10.1016/j.molcel.2020.09.005">10.1016/j.molcel.2020.09.005</a></li> <li>Strehle, Mackenzie and Guttman, Mitchell (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200615-114647527">Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation</a>; Current Opinion in Cell Biology; Vol. 64; 139-147; <a href="https://doi.org/10.1016/j.ceb.2020.04.009">10.1016/j.ceb.2020.04.009</a></li> <li>McDonel, Patrick and Guttman, Mitchell (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191218-091029384">Approaches for Understanding the Mechanisms of Long Noncoding RNA Regulation of Gene Expression</a>; Cold Spring Harbor Perspectives in Biology; Vol. 11; No. 12; Art. No. a032151; PMCID PMC6886450; <a href="https://doi.org/10.1101/cshperspect.a032151">10.1101/cshperspect.a032151</a></li> <li>van Bemmel, Joke G. and Galupa, Rafael, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190603-084109257">The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist</a>; Nature Genetics; Vol. 51; No. 6; 1024-1034; PMCID PMC6551226; <a href="https://doi.org/10.1038/s41588-019-0412-0">10.1038/s41588-019-0412-0</a></li> <li>Cerase, Andrea and Armaos, Alexandros, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190508-095119340">Phase separation drives X-chromosome inactivation: a hypothesis</a>; Nature Structural & Molecular Biology; Vol. 26; No. 5; 331-334; <a href="https://doi.org/10.1038/s41594-019-0223-0">10.1038/s41594-019-0223-0</a></li> <li>Munschauer, Mathias and Nguyen, Celina T., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180627-133236822">The NORAD lncRNA assembles a topoisomerase complex critical for genome stability</a>; Nature; Vol. 561; No. 7721; 132-136; <a href="https://doi.org/10.1038/s41586-018-0453-z">10.1038/s41586-018-0453-z</a></li> <li>Quinodoz, Sofia A. and Ollikainen, Noah, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180607-101054915">Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus</a>; Cell; Vol. 174; No. 3; 744-757; PMCID PMC6548320; <a href="https://doi.org/10.1016/j.cell.2018.05.024">10.1016/j.cell.2018.05.024</a></li> <li>McHugh, Colleen A. and Guttman, Mitchell (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171115-111045657">RAP-MS: A Method to Identify Proteins that Interact Directly with a Specific RNA Molecule in Cells</a>; ISBN 978-1-4939-7212-8; RNA Detection: Methods and Protocols; 473-488; <a href="https://doi.org/10.1007/978-1-4939-7213-5_31">10.1007/978-1-4939-7213-5_31</a></li> <li>Dekker, Job and Belmont, Andrew S., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170918-080921978">The 4D nucleome project</a>; Nature; Vol. 549; No. 7671; 219-226; PMCID PMC5617335; <a href="https://doi.org/10.1038/nature23884">10.1038/nature23884</a></li> <li>Chen, Chun-Kan and Chow, Amy, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170616-092953242">Response to Comment on "Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing"</a>; Science; Vol. 356; No. 6343; Art. No. eaam5439; <a href="https://doi.org/10.1126/science.aam5439">10.1126/science.aam5439</a></li> <li>Guttman, Mitchell and Breuer, Manuel (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170622-101815381">Cell scientist to watch – Mitchell Guttman</a>; Journal of Cell Science; Vol. 130; No. 9; 1497-1499; <a href="https://doi.org/10.1242/jcs.203976">10.1242/jcs.203976</a></li> <li>Blanco, Mario R. and Guttman, Mitchell (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170320-102657946">Re-evaluating the foundations of lncRNA–Polycomb function</a>; EMBO Journal; Vol. 36; No. 8; 964-966; <a href="https://doi.org/10.15252/embj.201796796">10.15252/embj.201796796</a></li> <li>Szempruch, Anthony and Guttman, Mitchell (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170228-082210878">Linking Protein and RNA Function within the Same Gene</a>; Cell; Vol. 168; No. 5; 753-755; <a href="https://doi.org/10.1016/j.cell.2017.02.014">10.1016/j.cell.2017.02.014</a></li> <li>Guttman, Mitchell (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170623-103451742">How a lncRNA Shapes Chromatin Structure to Control Gene Expression</a>; Biophysical Journal; Vol. 112; No. 3, Supp. 1; 158a; <a href="https://doi.org/10.1016/j.bpj.2016.11.868">10.1016/j.bpj.2016.11.868</a></li> <li>Cirillo, Davide and Blanco, Mario, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161026-132024065">Quantitative predictions of protein interactions with long non-coding RNAs</a>; Nature Methods; Vol. 14; No. 1; 5-6; <a href="https://doi.org/10.1038/nmeth.4100">10.1038/nmeth.4100</a></li> <li>McHugh, C. A. and Guttman, M. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170310-155810626">Uncovering mechanisms of lncRNA function through comprehensive identification of direct lncRNA-interacting proteins</a>; Molecular Biology of the Cell; Vol. 27; No. 25; M121; <a href="https://doi.org/10.1091/mbc.E16-10-0736">10.1091/mbc.E16-10-0736</a></li> <li>Engreitz, Jesse M. and Ollikainen, Noah, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161031-094814417">Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression</a>; Nature Reviews. Molecular Cell Biology; Vol. 17; No. 12; 756-770; <a href="https://doi.org/10.1038/nrm.2016.126">10.1038/nrm.2016.126</a></li> <li>Engreitz, Jesse M. and Haines, Jenna E., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161012-162725499">Local regulation of gene expression by lncRNA promoters, transcription, and splicing</a>; Nature; Vol. 539; No. 7629; 452-455; PMCID PMC6853796; <a href="https://doi.org/10.1038/nature20149">10.1038/nature20149</a></li> <li>Chen, Chun-Kan and Blanco, Mario, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160418-091128052">Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing</a>; Science; Vol. 354; No. 6311; 468-472; <a href="https://doi.org/10.1126/science.aae0047">10.1126/science.aae0047</a></li> <li>Patil, Deepak P. and Chen, Chun-Kan, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160912-092146480">m⁶A RNA methylation promotes XIST-mediated transcriptional repression</a>; Nature; Vol. 537; No. 7620; 369-373; PMCID PMC5509218; <a href="https://doi.org/10.1038/nature19342">10.1038/nature19342</a></li> <li>Van Nostrand, Eric L. and Pratt, Gabriel A., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160210-225928240">Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)</a>; Nature Methods; Vol. 13; No. 6; 508-514; <a href="https://doi.org/10.1038/nmeth.3810">10.1038/nmeth.3810</a></li> <li>Engreitz, Jesse M. and Haines, Jenna E., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160513-141401565">Neighborhood regulation by lncRNA promoters, transcription, and splicing</a>; <a href="https://doi.org/10.1101/050948">10.1101/050948</a></li> <li>Dekker, Job and Guttman, Mitchell, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160512-085629396">A Guide to Packing Your DNA</a>; Cell; Vol. 165; No. 2; 259-261; <a href="https://doi.org/10.1016/j.cell.2016.03.039">10.1016/j.cell.2016.03.039</a></li> <li>Chen, Jenny and Shishkin, Alexander A., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160211-121026093">Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs</a>; Genome Biology; Vol. 17; Art. No. 19; PMCID PMC4739325; <a href="https://doi.org/10.1186/s13059-016-0880-9">10.1186/s13059-016-0880-9</a></li> <li>Paten, Benedict and Diekhans, Mark, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150721-085701041">The NIH BD2K center for big data in translational genomics</a>; Journal of the American Medical Informatics Association; Vol. 22; No. 6; 1143-1147; PMCID PMC5009913; <a href="https://doi.org/10.1093/jamia/ocv047">10.1093/jamia/ocv047</a></li> <li>McHugh, Colleen A. and Chen, Chun-Kan, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150319-091012142">The Xist lncRNA interacts with SHARP to silence transcription through HDAC3</a>; Nature; Vol. 521; No. 7551; 232-236; PMCID PMC4516396; <a href="https://doi.org/10.1038/nature14443">10.1038/nature14443</a></li> <li>Shishkin, Alexander A. and Giannoukos, Georgia, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150106-114459354">Simultaneous generation of many RNA-seq libraries in a single reaction</a>; Nature Methods; Vol. 12; No. 4; 323-325; PMCID PMC4712044; <a href="https://doi.org/10.1038/nmeth.3313">10.1038/nmeth.3313</a></li> <li>Engreitz, Jesse and Lander, Eric S., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150507-091048417">RNA Antisense Purification (RAP) for Mapping RNA Interactions with Chromatin</a>; ISBN 978-1-4939-2252-9; Nuclear Bodies and Noncoding RNAs: Methods and Protocols; 183-197; <a href="https://doi.org/10.1007/978-1-4939-2253-6_11">10.1007/978-1-4939-2253-6_11</a></li> <li>Quinodoz, Sofia and Guttman, Mitchell (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141027-082339763">Long noncoding RNAs: an emerging link between gene regulation and nuclear organization</a>; Trends in Cell Biology; Vol. 24; No. 11; 651-663; PMCID PMC4254690; <a href="https://doi.org/10.1016/j.tcb.2014.08.009">10.1016/j.tcb.2014.08.009</a></li> <li>Myskiw, Chad and Kadri, Sabah, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150604-151125153">Analysis of long non-coding RNA expression and function in a mouse model of glioblastoma</a>; Cancer Research; Vol. 74; No. 19 Suppleme; Art. No. 524; <a href="https://doi.org/10.1158/1538-7445.AM2014-524">10.1158/1538-7445.AM2014-524</a></li> <li>Ach, Robert A. and Tsang, Peter, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150604-145109677">Use of complex oligonucleotide libraries for concurrent high-resolution fluorescence imaging of both DNA and RNA in various sample types</a>; Cancer Research; Vol. 74; No. 19 Suppleme; Art. No. 1513; <a href="https://doi.org/10.1158/1538-7445.AM2014-1513">10.1158/1538-7445.AM2014-1513</a></li> <li>Engreitz, Jesse M. and Sirokman, Klara, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141002-105821728">RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites</a>; Cell; Vol. 159; No. 1; 188-199; PMCID PMC4177037; <a href="https://doi.org/10.1016/j.cell.2014.08.018">10.1016/j.cell.2014.08.018</a></li> <li>Schwartz, Schraga and Bernstein, Douglas A., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140926-091148899">Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA</a>; Cell; Vol. 159; No. 1; 148-162; PMCID PMC4180118; <a href="https://doi.org/10.1016/j.cell.2014.08.028">10.1016/j.cell.2014.08.028</a></li> <li>Rinn, John and Guttman, Mitchell (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140919-083502960">RNA and dynamic nuclear organization</a>; Science; Vol. 345; No. 6202; 1240-1241; PMCID PMC4186717; <a href="https://doi.org/10.1126/science.1252966">10.1126/science.1252966</a></li> <li>Hacisuleyman, Ezgi and Goff, Loyal A., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140204-110837761">Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre</a>; Nature Structural & Molecular Biology; Vol. 21; No. 2; 198-206; PMCID PMC3950333; <a href="https://doi.org/10.1038/nsmb.2764">10.1038/nsmb.2764</a></li> <li>McHugh, Colleen A. and Russell, Pamela, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140130-081617569">Methods for comprehensive experimental identification of RNA-protein interactions</a>; Genome Biology; Vol. 15; No. 1; Art. No. 203; PMCID PMC4054858; <a href="https://doi.org/10.1186/gb4152">10.1186/gb4152</a></li> <li>Engreitz, Jesse M. and Pandya-Jones, Amy, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-141829859">The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome</a>; Science; Vol. 341; No. 6147; Art. No. 1237973; PMCID PMC3778663; <a href="https://doi.org/10.1126/science.1237973">10.1126/science.1237973</a></li> <li>Guttman, Mitchell and Russell, Pamela, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130812-133421825">Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins</a>; Cell; Vol. 154; No. 1; 240-251; PMCID PMC3756563; <a href="https://doi.org/10.1016/j.cell.2013.06.009">10.1016/j.cell.2013.06.009</a></li> <li>Gifford, Casey A. and Ziller, Michael J., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-130451607">Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells</a>; Cell; Vol. 153; No. 5; 1149-1163; PMCID PMC3709577; <a href="https://doi.org/10.1016/j.cell.2013.04.037">10.1016/j.cell.2013.04.037</a></li> <li>Kirby, Andrew and Guttman, Mitchell (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-082748151">Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing</a>; Nature Genetics; Vol. 45; No. 3; 299-303; PMCID PMC3901305; <a href="https://doi.org/10.1038/ng.2543">10.1038/ng.2543</a></li> <li>Garber, Manuel and Guttman, Mitchell (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-073136200">A High-Throughput Chromatin Immunoprecipitation Approach Reveals Principles of Dynamic Gene Regulation in Mammals</a>; Molecular Cell; Vol. 47; No. 5; 810-822; PMCID PMC3873101; <a href="https://doi.org/10.1016/j.molcel.2012.07.030">10.1016/j.molcel.2012.07.030</a></li> <li>Guttman, Mitchell and Rinn, John L. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-073117519">Modular regulatory principles of large non-coding RNAs</a>; Nature; Vol. 482; No. 7385; 339-346; PMCID PMC4197003; <a href="https://doi.org/10.1038/nature10887">10.1038/nature10887</a></li> <li>Lindblad-Toh, Kerstin and Guttman, Mitchell (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-154852383">A high-resolution map of human evolutionary constraint using 29 mammals</a>; Nature; Vol. 478; No. 7370; 476-482; PMCID PMC3207357; <a href="https://doi.org/10.1038/nature10530">10.1038/nature10530</a></li> <li>Guttman, Mitchell and Donaghey, Julie, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-153838401">lincRNAs act in the circuitry controlling pluripotency and differentiation</a>; Nature; Vol. 477; No. 7364; 295-300; PMCID PMC3175327; <a href="https://doi.org/10.1038/nature10398">10.1038/nature10398</a></li> <li>Garber, Manuel and Grabherr, Manfred G., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-084822107">Computational methods for transcriptome annotation and quantification using RNA-seq</a>; Nature Methods; Vol. 8; No. 6; 469-477; <a href="https://doi.org/10.1038/NMETH.1613">10.1038/NMETH.1613</a></li> <li>Robinson, James T. and Thorvaldsdóttir, Helga, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-080133273">Integrative genomics viewer</a>; Nature Biotechnology; Vol. 29; No. 1; 24-26; PMCID PMC3346182; <a href="https://doi.org/10.1038/nbt.1754">10.1038/nbt.1754</a></li> <li>Loewer, Sabine and Cabili, Moran N., el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-075138398">Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells</a>; Nature Genetics; Vol. 42; No. 12; 1113-1117; PMCID PMC3040650; <a href="https://doi.org/10.1038/ng.710">10.1038/ng.710</a></li> <li>Huarte, Maite and Guttman, Mitchell, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-130357891">A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response</a>; Cell; Vol. 142; No. 3; 409-419; PMCID PMC2956184; <a href="https://doi.org/10.1016/j.cell.2010.06.040">10.1016/j.cell.2010.06.040</a></li> <li>Guttman, Mitchell and Garber, Manuel, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-073633977">Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs</a>; Nature Biotechnology; Vol. 28; No. 5; 503-510; PMCID PMC2868100; <a href="https://doi.org/10.1038/nbt.1633">10.1038/nbt.1633</a></li> <li>Ozsolak, Fatih and Goren, Alon, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-135603621">Digital transcriptome profiling from attomole-level RNA samples</a>; Genome Research; Vol. 20; No. 4; 519-525; PMCID PMC2847755; <a href="https://doi.org/10.1101/gr.102129.109">10.1101/gr.102129.109</a></li> <li>Amit, Ido and Garber, Manuel, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-130217653">Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses</a>; Science; Vol. 326; No. 5950; 257-263; PMCID PMC2879337; <a href="https://doi.org/10.1126/science.1179050">10.1126/science.1179050</a></li> <li>Khalil, Ahmad M. and Guttman, Mitchell, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-140449068">Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 106; No. 28; 11667-11672; PMCID PMC2704857; <a href="https://doi.org/10.1073/pnas.0904715106">10.1073/pnas.0904715106</a></li> <li>Garber, Manuel and Guttman, Mitchell, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-081912441">Identifying novel constrained elements by exploiting biased substitution patterns</a>; Bioinformatics; Vol. 25; No. 12; i54-i62; PMCID PMC2687944; <a href="https://doi.org/10.1093/bioinformatics/btp190">10.1093/bioinformatics/btp190</a></li> <li>Guttman, Mitchell and Amit, Ido, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-144950442">Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals</a>; Nature; Vol. 458; No. 7235; 223-227; PMCID PMC2754849; <a href="https://doi.org/10.1038/nature07672">10.1038/nature07672</a></li> <li>Guttman, Mitchell and Mies, Carolyn, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-151605200">Assessing the Significance of Conserved Genomic Aberrations Using High Resolution Genomic Microarrays</a>; PLoS Genetics; Vol. 3; No. 8; Art. No. e143; PMCID PMC1950957; <a href="https://doi.org/10.1371/journal.pgen.0030143">10.1371/journal.pgen.0030143</a></li> <li>Nagi, Chandandeep and Guttman, Mitchell, el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-143539551">N-cadherin Expression in Breast Cancer: Correlation with an Aggressive Histologic Variant – Invasive Micropapillary Carcinoma</a>; Breast Cancer Research and Treatment; Vol. 94; No. 3; 225-235; <a href="https://doi.org/10.1007/s10549-005-7727-5">10.1007/s10549-005-7727-5</a></li> <li>Suyama, Kimita and Shapiro, Irina, el al. (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161122-082438332">A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor</a>; Cancer Cell; Vol. 2; No. 4; 301-314; <a href="https://doi.org/10.1016/S1535-6108(02)00150-2">10.1016/S1535-6108(02)00150-2</a></li> </ul>