<h1>Gregoire, John</h1>
<h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2>
<ul>
<li>Jones, Ryan J. R. and Lai, Yungchieh, el al. (2024) <a href="https://authors.library.caltech.edu/records/bmj14-tyb04">Accelerated screening of gas diffusion electrodes for carbon dioxide reduction</a>; Digital Discovery; Vol. 3; No. 6; 1144-1149; <a href="https://doi.org/10.1039/D4DD00061G">10.1039/D4DD00061G</a></li>
<li>Watkins, Nicholas B. and Lai, Yungchieh, el al. (2024) <a href="https://authors.library.caltech.edu/records/3nc5y-wq154">Electrode Surface Heating with Organic Films Improves CO₂ Reduction Kinetics on Copper</a>; ACS Energy Letters; Vol. 9; No. 4; 1440-1445; PMCID PMC11019637; <a href="https://doi.org/10.1021/acsenergylett.4c00204">10.1021/acsenergylett.4c00204</a></li>
<li>Jones, Ryan J. R. and Lai, Yungchieh, el al. (2024) <a href="https://authors.library.caltech.edu/records/djvrc-zcv46">Accelerated screening of carbon dioxide capture by liquid sorbents</a>; Digital Discovery; Vol. 3; No. 4; 674-680; <a href="https://doi.org/10.1039/d3dd00232b">10.1039/d3dd00232b</a></li>
<li>Kan, Kevin and Guevarra, Dan, el al. (2024) <a href="https://authors.library.caltech.edu/records/x321j-1fp56">Accelerated Characterization of Electrode‐Electrolyte Equilibration</a>; ChemCatChem; Vol. 16; No. 6; e202301300; <a href="https://doi.org/10.1002/cctc.202301300">10.1002/cctc.202301300</a></li>
<li>Statt, Michael J. and Rohr, Brian A., el al. (2024) <a href="https://authors.library.caltech.edu/records/y0dyj-gv779">Event-driven data management with cloud computing for extensible materials acceleration platforms</a>; Digital Discovery; Vol. 3; No. 2; 238-242; <a href="https://doi.org/10.1039/d3dd00220a">10.1039/d3dd00220a</a></li>
<li>Guevarra, Dan and Kan, Kevin, el al. (2023) <a href="https://authors.library.caltech.edu/records/ck7sp-6m478">Orchestrating nimble experiments across interconnected labs</a>; Digital Discovery; Vol. 2; No. 6; 1806-1812; <a href="https://doi.org/10.1039/d3dd00166k">10.1039/d3dd00166k</a></li>
<li>Min, Yimeng and Chang, Ming-Chiang, el al. (2023) <a href="https://authors.library.caltech.edu/records/3134j-2yq71">Physically Informed Graph-Based Deep Reasoning Net for Efficient Combinatorial Phase Mapping</a>; ISBN 979-8-3503-4534-6; 2023 International Conference on Machine Learning and Applications (ICMLA); 392-399; <a href="https://doi.org/10.1109/icmla58977.2023.00061">10.1109/icmla58977.2023.00061</a></li>
<li>Statt, Michael J. and Rohr, Brian A., el al. (2023) <a href="https://authors.library.caltech.edu/records/gtcgp-kp430">ESAMP: event-sourced architecture for materials provenance management and application to accelerated materials discovery</a>; Digital Discovery; Vol. 2; No. 4; 1078-1088; <a href="https://doi.org/10.1039/d3dd00054k">10.1039/d3dd00054k</a></li>
<li>Statt, Michael J. and Rohr, Brian A., el al. (2023) <a href="https://authors.library.caltech.edu/records/6fqp8-y9536">The materials experiment knowledge graph</a>; Digital Discovery; Vol. 2; No. 4; 909-914; <a href="https://doi.org/10.1039/d3dd00067b">10.1039/d3dd00067b</a></li>
<li>Gregoire, John M. and Zhou, Lan, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230725-857124000.42">Combinatorial synthesis for AI-driven materials discovery</a>; Nature Synthesis; Vol. 2; No. 6; 493-504; <a href="https://doi.org/10.1038/s44160-023-00251-4">10.1038/s44160-023-00251-4</a></li>
<li>Watkins, Nicholas B. and Schiffer, Zachary J., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230502-856709200.5">Hydrodynamics Change Tafel Slopes in Electrochemical CO₂ Reduction on Copper</a>; ACS Energy Letters; Vol. 8; No. 5; 2185-2192; <a href="https://doi.org/10.1021/acsenergylett.3c00442">10.1021/acsenergylett.3c00442</a></li>
<li>Statt, Michael J. and Rohr, Brian A., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230524-373605000.1">The Materials Experiment Knowledge Graph</a>; <a href="https://doi.org/10.26434/chemrxiv-2023-md55t">10.26434/chemrxiv-2023-md55t</a></li>
<li>Statt, Michael J. and Rohr, Brian A., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230519-1502000.6">The Materials Provenance Store</a>; Scientific Data; Vol. 10; 184; PMCID PMC10079965; <a href="https://doi.org/10.1038/s41597-023-02107-0">10.1038/s41597-023-02107-0</a></li>
<li>Rao, Karun K. and Zhou, Lan, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230214-87246900.12">Resolving atomistic structure and oxygen evolution activity in nickel antimonates</a>; Journal of Materials Chemistry A; Vol. 11; No. 10; 5166-5178; <a href="https://doi.org/10.1039/d2ta08854a">10.1039/d2ta08854a</a></li>
<li>Watkins, Nicholas B. and Schiffer, Zachary J., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230324-864199000.4">Hydrodynamics Determine Tafel Slopes in Electrochemical CO₂ Reduction on Copper</a>; <a href="https://doi.org/10.26434/chemrxiv-2023-npdmn">10.26434/chemrxiv-2023-npdmn</a></li>
<li>Zhou, Lan and Peterson, Elizabeth A., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230123-451320900.13">Fe Substitutions Improve Spectral Response of Bi₂WO₆-Based Photoanodes</a>; ACS Applied Energy Materials; Vol. 5; No. 12; 15333-15344; <a href="https://doi.org/10.1021/acsaem.2c02964">10.1021/acsaem.2c02964</a></li>
<li>Zhou, Lan and Wang, Yu, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221212-796684400.33">Surveying Metal Antimonate Photoanodes for Solar Fuel Generation</a>; ACS Sustainable Chemistry &amp; Engineering; Vol. 10; No. 48; 15898-15908; <a href="https://doi.org/10.1021/acssuschemeng.2c05239">10.1021/acssuschemeng.2c05239</a></li>
<li>Zhou, Lan and Guevarra, Dan, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220727-38126000">High throughput discovery of enhanced visible photoactivity in Fe–Cr vanadate solar fuels photoanodes</a>; Journal of Physics: Energy; Vol. 4; No. 4; Art. No. 044001; <a href="https://doi.org/10.1088/2515-7655/ac817e">10.1088/2515-7655/ac817e</a></li>
<li>Burke Stevens, Michaela and Anand, Megha, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220811-235016000">New challenges in oxygen reduction catalysis: a consortium retrospective to inform future research</a>; Energy and Environmental Science; Vol. 15; No. 9; 3775-3794; <a href="https://doi.org/10.1039/d2ee01333a">10.1039/d2ee01333a</a></li>
<li>Segev, Gideon and Kibsgaard, Jakob, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220608-849360000">The 2022 solar fuels roadmap</a>; Journal of Physics D: Applied Physics; Vol. 55; No. 32; Art. No. 323003; <a href="https://doi.org/10.1088/1361-6463/ac6f97">10.1088/1361-6463/ac6f97</a></li>
<li>Greenaway, Ann L. and Ke, Sijia, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220414-25692000">Zinc Titanium Nitride Semiconductor toward Durable Photoelectrochemical Applications</a>; Journal of the American Chemical Society; Vol. 144; No. 30; 13673-13687; PMCID PMC9354241; <a href="https://doi.org/10.1021/jacs.2c04241">10.1021/jacs.2c04241</a></li>
<li>Zhou, Lan and Peterson, Elizabeth A., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220705-346693000">Addressing solar photochemistry durability with an amorphous nickel antimonate photoanode</a>; Cell Reports Physical Science; Vol. 3; No. 7; Art. No. 100959; <a href="https://doi.org/10.1016/j.xcrp.2022.100959">10.1016/j.xcrp.2022.100959</a></li>
<li>Yano, Junko and Gaffney, Kelly J., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220426-20753500">The case for data science in experimental chemistry: examples and recommendations</a>; Nature Reviews Chemistry; Vol. 6; No. 5; 357-370; <a href="https://doi.org/10.1038/s41570-022-00382-w">10.1038/s41570-022-00382-w</a></li>
<li>Guevarra, Dan and Zhou, Lan, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220406-727178868">Materials structure–property factorization for identification of synergistic phase interactions in complex solar fuels photoanodes</a>; npj Computational Materials; Vol. 8; Art. No. 57; <a href="https://doi.org/10.1038/s41524-022-00747-1">10.1038/s41524-022-00747-1</a></li>
<li>Lai, Yungchieh and Watkins, Nicholas B., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220301-900116000">Molecular Coatings Improve the Selectivity and Durability of CO₂ Reduction Chalcogenide Photocathodes</a>; ACS Energy Letters; Vol. 7; No. 3; 1195-1201; <a href="https://doi.org/10.1021/acsenergylett.1c02762">10.1021/acsenergylett.1c02762</a></li>
<li>Zhou, Lan and Li, Hao, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220217-686997000">Stability and Activity of Cobalt Antimonate for Oxygen Reduction in Strong Acid</a>; ACS Energy Letters; Vol. 7; No. 3; 993-1000; <a href="https://doi.org/10.1021/acsenergylett.1c02673">10.1021/acsenergylett.1c02673</a></li>
<li>Rahmanian, Fuzhan and Flowers, Jackson, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211015-162629818">Enabling Modular Autonomous Feedback-Loops in Materials Science through Hierarchical Experimental Laboratory Automation and Orchestration</a>; Advanced Materials Interfaces; Vol. 9; No. 8; Art. No. 2101987; <a href="https://doi.org/10.1002/admi.202101987">10.1002/admi.202101987</a></li>
<li>Kong, Shufeng and Ricci, Francesco, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220222-762467100">Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings</a>; Nature Communications; Vol. 13; Art. No. 949; <a href="https://doi.org/10.1038/s41467-022-28543-x">10.1038/s41467-022-28543-x</a></li>
<li>Rao, Karun K. and Lai, Yungchieh, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220124-215443000">Overcoming Hurdles in Oxygen Evolution Catalyst Discovery via Codesign</a>; Chemistry of Materials; Vol. 34; No. 3; 899-910; <a href="https://doi.org/10.1021/acs.chemmater.1c04120">10.1021/acs.chemmater.1c04120</a></li>
<li>Lamaison, Sarah and Wakerley, David, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211130-202117453">Designing a Zn–Ag Catalyst Matrix and Electrolyzer System for CO₂ Conversion to CO and Beyond</a>; Advanced Materials; Vol. 34; No. 1; Art. No. 2103963; <a href="https://doi.org/10.1002/adma.202103963">10.1002/adma.202103963</a></li>
<li>Guevarra, Dan and Haber, Joel A., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211201-175953649">High Throughput Discovery of Complex Metal Oxide Electrocatalysts for the Oxygen Reduction Reaction</a>; Electrocatalysis; Vol. 13; No. 1; 1-10; <a href="https://doi.org/10.1007/s12678-021-00694-3">10.1007/s12678-021-00694-3</a></li>
<li>Ament, Sebastian and Amsler, Maximilian, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211220-590745000">Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams</a>; Science Advances; Vol. 7; No. 51; Art. No. abg4930; PMCID PMC8682983; <a href="https://doi.org/10.1126/sciadv.abg4930">10.1126/sciadv.abg4930</a></li>
<li>Lai, Yunchieh and Watkins, Nicholas B., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210610-080047277">Breaking Scaling Relationships in CO₂ Reduction on Copper Alloys with Organic Additives</a>; ACS Central Science; Vol. 7; No. 10; 1756-1762; PMCID PMC8554824; <a href="https://doi.org/10.1021/acscentsci.1c00860">10.1021/acscentsci.1c00860</a></li>
<li>Richter, Matthias H. and Peterson, Elizabeth A., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210917-215611668">Band Edge Energy Tuning through Electronic Character Hybridization in Ternary Metal Vanadates</a>; Chemistry of Materials; Vol. 33; No. 18; 7242-7253; <a href="https://doi.org/10.1021/acs.chemmater.1c01415">10.1021/acs.chemmater.1c01415</a></li>
<li>Yang, Lusann and Haber, Joel A., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210914-182227400">Discovery of complex oxides via automated experiments and data science</a>; Proceedings of the National Academy of Sciences; Vol. 118; No. 37; Art. No. e2106042118; PMCID PMC8449358; <a href="https://doi.org/10.1073/pnas.2106042118">10.1073/pnas.2106042118</a></li>
<li>Stach, Eric and DeCost, Brian, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210729-223028773">Autonomous experimentation systems for materials development: A community perspective</a>; Matter; Vol. 4; No. 9; 2702-2726; <a href="https://doi.org/10.1016/j.matt.2021.06.036">10.1016/j.matt.2021.06.036</a></li>
<li>Chen, Di and Bai, Yiwei, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210917-144224516">Automating crystal-structure phase mapping by combining deep learning with constraint reasoning</a>; Nature Machine Intelligence; Vol. 3; No. 9; 812-822; <a href="https://doi.org/10.1038/s42256-021-00384-1">10.1038/s42256-021-00384-1</a></li>
<li>Wang, Lei and Peng, Hongjie, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210607-115054455">Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO₂ to CO</a>; Chem Catalysis; Vol. 1; No. 3; 663-680; <a href="https://doi.org/10.1016/j.checat.2021.05.006">10.1016/j.checat.2021.05.006</a></li>
<li>Gomes, Carla P. and Fink, Daniel, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210812-152851916">Computational sustainability meets materials science</a>; Nature Reviews Materials; Vol. 6; No. 8; 645-647; <a href="https://doi.org/10.1038/s41578-021-00348-2">10.1038/s41578-021-00348-2</a></li>
<li>Statt, Michael J. and Rohr, Brian A., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210629-214641737">ESAMP: Event-Sourced Architecture for Materials Provenance Management and Application to Accelerated Materials Discovery</a>; <a href="https://doi.org/10.26434/chemrxiv.14583258.v1">10.26434/chemrxiv.14583258.v1</a></li>
<li>Li, Hao and Kelly, Sara, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210324-112501603">Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces</a>; Nature Catalysis; Vol. 4; No. 6; 463-468; <a href="https://doi.org/10.1038/s41929-021-00618-w">10.1038/s41929-021-00618-w</a></li>
<li>Kong, Shufeng and Guevarra, Dan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210626-225301174">Materials representation and transfer learning for multi-property prediction</a>; Applied Physics Reviews; Vol. 8; No. 2; Art. No. 021409; <a href="https://doi.org/10.1063/5.0047066">10.1063/5.0047066</a></li>
<li>Newhouse, Paul F. and Zhou, Lan, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201030-154047149">Bi Alloying into Rare Earth Double Perovskites Enhances Synthesizability and Visible Light Absorption</a>; ACS Combinatorial Science; Vol. 22; No. 12; 895-901; <a href="https://doi.org/10.1021/acscombsci.0c00177">10.1021/acscombsci.0c00177</a></li>
<li>Sutherland, Duncan R. and Connolly, Aine Boyer, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201030-105644203">Optical Identification of Materials Transformations in Oxide Thin Films</a>; ACS Combinatorial Science; Vol. 22; No. 12; 887-894; <a href="https://doi.org/10.1021/acscombsci.0c00172">10.1021/acscombsci.0c00172</a></li>
<li>Newhouse, Paul F. and Guevarra, Dan, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201002-103843089">Enhanced Bulk Transport in Copper Vanadate Photoanodes Identified by Combinatorial Alloying</a>; Matter; Vol. 3; No. 5; 1601-1613; <a href="https://doi.org/10.1016/j.matt.2020.08.032">10.1016/j.matt.2020.08.032</a></li>
<li>Zhou, Lan and Shinde, Aniketa, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201002-151459149">Quaternary Oxide Photoanode Discovery Improves the Spectral Response and Photovoltage of Copper Vanadates</a>; Matter; Vol. 3; No. 5; 1614-1630; <a href="https://doi.org/10.1016/j.matt.2020.08.031">10.1016/j.matt.2020.08.031</a></li>
<li>Chen, Di and Bai, Yiwei, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211008-163254045">Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint Reasoning</a>; Proceedings of Machine Learning Research; Vol. 119; 1500-1509</li>
<li>Zhang, Zemin and Lindley, Sarah A., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200504-153132620">Fermi Level Engineering of Passivation and Electron Transport Materials for p-Type CuBi₂O₄ Employing a High‐Throughput Methodology</a>; Advanced Functional Materials; Vol. 30; No. 24; Art. No. 2000948; <a href="https://doi.org/10.1002/adfm.202000948">10.1002/adfm.202000948</a></li>
<li>Umehara, Mitsutaro and Zhou, Lan, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200430-151239863">Combinatorial synthesis of oxysulfides in the lanthanum-bismuth-copper system</a>; ACS Combinatorial Science; Vol. 22; No. 6; 319-326; <a href="https://doi.org/10.1021/acscombsci.0c00015">10.1021/acscombsci.0c00015</a></li>
<li>Zhou, Lan and Shinde, Aniketa, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200331-093744929">On the successes and opportunities for discovery of metal oxide photoanodes for solar fuels generators</a>; ACS Energy Letters; Vol. 5; No. 5; 1413-1421; <a href="https://doi.org/10.1021/acsenergylett.0c00067">10.1021/acsenergylett.0c00067</a></li>
<li>Yao, Yonggang and Huang, Zhennan, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200310-155236320">High-throughput, combinatorial synthesis of multimetallic nanoclusters</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 117; No. 12; 6316-6322; PMCID PMC7104385; <a href="https://doi.org/10.1073/pnas.1903721117">10.1073/pnas.1903721117</a></li>
<li>Rohr, Brian and Stein, Helge S., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200110-151145517">Benchmarking the Acceleration of Materials Discovery by Sequential Learning</a>; Chemical Science; Vol. 11; No. 10; 2696-2706; <a href="https://doi.org/10.1039/c9sc05999g">10.1039/c9sc05999g</a></li>
<li>Zhou, Lan and Shinde, Aniketa, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200110-145307662">Combinatorial screening yields discovery of 29 metal oxide photoanodes for solar fuel generation</a>; Journal of Materials Chemistry A; Vol. 8; No. 8; 4239-4243; <a href="https://doi.org/10.1039/c9ta13829c">10.1039/c9ta13829c</a></li>
<li>Lai, Yungchieh and Jones, Ryan J. R., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191105-102648597">The Sensitivity of Cu for Electrochemical Carbon Dioxide Reduction to Hydrocarbons as Revealed by High Throughput Experiments</a>; Journal of Materials Chemistry A; Vol. 7; No. 47; 26785-26790; <a href="https://doi.org/10.1039/c9ta10111j">10.1039/c9ta10111j</a></li>
<li>Aykol, Muratahan and Gregoire, John M. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191127-091925254">The Materials Research Platform: Defining the Requirements from User Stories</a>; Matter; Vol. 1; No. 6; 1433-1438; <a href="https://doi.org/10.1016/j.matt.2019.10.024">10.1016/j.matt.2019.10.024</a></li>
<li>Noh, Juhwan and Kim, Sungwon, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191023-085621884">Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments</a>; Chemical Communications; Vol. 55; No. 89; 13418-13421; <a href="https://doi.org/10.1039/c9cc06736a">10.1039/c9cc06736a</a></li>
<li>Stein, Helge S. and Gregoire, John M. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191016-131623439">Progress and prospects for accelerating materials science with automated and autonomous workflows</a>; Chemical Science; Vol. 10; No. 42; 9640-9649; PMCID PMC7020936; <a href="https://doi.org/10.1039/c9sc03766g">10.1039/c9sc03766g</a></li>
<li>Noh, Juhwan and Kim, Jaehoon, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191002-094950933">Inverse Design of Solid-State Materials via a Continuous Representation</a>; Matter; Vol. 1; No. 5; 1370-1384; <a href="https://doi.org/10.1016/j.matt.2019.08.017">10.1016/j.matt.2019.08.017</a></li>
<li>Lai, Yungchieh and Jones, Ryan J. R., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190917-112624016">Scanning electrochemical flow cell with online mass spectroscopy for accelerated screening of carbon dioxide reduction electrocatalysts</a>; ACS Combinatorial Science; Vol. 21; No. 10; 692-704; <a href="https://doi.org/10.1021/acscombsci.9b00130">10.1021/acscombsci.9b00130</a></li>
<li>Gregoire, John M. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191002-094950844">Unexpected Transitions Yield Interesting Science and High-Performance Materials</a>; Matter; Vol. 1; No. 4; 790-791; <a href="https://doi.org/10.1016/j.matt.2019.09.006">10.1016/j.matt.2019.09.006</a></li>
<li>Gomes, Carla and Gregoire, John (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190920-080802370">Computational sustainability: computing for a better world and a sustainable future</a>; Communications of the ACM; Vol. 62; No. 9; 56-65; <a href="https://doi.org/10.1145/3339399">10.1145/3339399</a></li>
<li>Haber, Joel and Stein, Helge S., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190812-111645069">Functional mapping reveals mechanistic clusters for OER catalysis across (Cu-Mn-Ta-Co-Sn-Fe)Ox composition and pH space</a></li>
<li>Newhouse, Paul and Guevarra, Dan, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190812-125247272">Multi-modal optimization of bismuth vanadate photoanodes via combinatorial alloying and hydrogen processing</a></li>
<li>Soedarmadji, Edwin and Stein, Helge S., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190726-101520787">Tracking materials science data lineage to manage millions of materials experiments and analyses</a>; npj Computational Materials; Vol. 5; Art. No. 79; <a href="https://doi.org/10.1038/s41524-019-0216-x">10.1038/s41524-019-0216-x</a></li>
<li>Ament, Sebastian E. and Stein, Helge S., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190719-095139134">Multi-component background learning automates signal detection for spectroscopic data</a>; npj Computational Materials; Vol. 5; Art. No. 77; <a href="https://doi.org/10.1038/s41524-019-0213-0">10.1038/s41524-019-0213-0</a></li>
<li>Stein, Helge S. and Guevarra, Dan, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190403-094432903">Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)O_x composition and pH space</a>; Materials Horizons; Vol. 6; No. 6; 1251-1258; <a href="https://doi.org/10.1039/c8mh01641k">10.1039/c8mh01641k</a></li>
<li>Gomes, Carla P. and Selman, Bart, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190801-085714793">Artificial intelligence for materials discovery</a>; MRS Bulletin; Vol. 44; No. 7; 538-544; <a href="https://doi.org/10.1557/mrs.2019.158">10.1557/mrs.2019.158</a></li>
<li>Gomes, Carla P. and Bai, Junwen, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190816-090926308">CRYSTAL: a multi-agent AI system for automated mapping of materials' crystal structures</a>; MRS Communications; Vol. 9; No. 2; 600-608; <a href="https://doi.org/10.1557/mrc.2019.50">10.1557/mrc.2019.50</a></li>
<li>Bai, Junwen and Lai, Zihang, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190425-082002655">Imitation Refinement for X-ray Diffraction Signal Processing</a>; ISBN 978-1-5386-4658-8; 2019 IEEE International Conference on Acoustics, Speech and Signal Processing; 3337-3341; <a href="https://doi.org/10.1109/ICASSP.2019.8683723">10.1109/ICASSP.2019.8683723</a></li>
<li>Stein, Helge S. and Soedarmadji, Edwin, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-100527853">Synthesis, optical imaging, and absorption spectroscopy data for 179072 metal oxides</a>; Scientific Data; Vol. 6; Art. No. 9; PMCID PMC6437643; <a href="https://doi.org/10.1038/s41597-019-0019-4">10.1038/s41597-019-0019-4</a></li>
<li>Umehara, Mitsutaro and Stein, Helge S., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190308-084331413">Analyzing machine learning models to accelerate generation of fundamental materials insights</a>; npj Computational Materials; Vol. 5; Art. No. 34; <a href="https://doi.org/10.1038/s41524-019-0172-5">10.1038/s41524-019-0172-5</a></li>
<li>Singh, Arunima K. and Montoya, Joseph H., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190129-080508688">Robust and synthesizable photocatalysts for CO₂ reduction: a data-driven materials discovery</a>; Nature Communications; Vol. 10; Art. No. 443; PMCID PMC6347635; <a href="https://doi.org/10.1038/s41467-019-08356-1">10.1038/s41467-019-08356-1</a></li>
<li>Newhouse, P. F. and Guevarra, D., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181217-090927342">Multi-modal optimization of bismuth vanadate photoanodes via combinatorial alloying and hydrogen processing</a>; Chemical Communications; Vol. 55; No. 4; 489-492; <a href="https://doi.org/10.1039/c8cc07156j">10.1039/c8cc07156j</a></li>
<li>Stein, Helge S. and Guevarra, Dan, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180730-104921622">Machine learning of optical properties of materials - predicting spectra from images and images from spectra</a>; Chemical Science; Vol. 10; No. 1; 47-55; PMCID PMC6334722; <a href="https://doi.org/10.1039/c8sc03077d">10.1039/c8sc03077d</a></li>
<li>Alberi, Kirstin and Gregoire, John (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181108-080822303">The 2019 materials by design roadmap</a>; Journal of Physics D: Applied Physics; Vol. 52; No. 1; Art. No. 013001; <a href="https://doi.org/10.1088/1361-6463/aad926">10.1088/1361-6463/aad926</a></li>
<li>Liu, Guiji and Eichhorn, Johanna, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181116-091613557">Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO₄ overlayers</a>; Sustainable Energy and Fuels; Vol. 3; No. 1; 127-135; <a href="https://doi.org/10.1039/C8SE00473K">10.1039/C8SE00473K</a></li>
<li>Zhou, Lan and Shinde, Aniketa, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181017-092736202">Rutile alloys in the Mn-Sb-O system stabilize Mn^(+3) to enable oxygen evolution in strong acid</a>; ACS Catalysis; Vol. 8; No. 12; 10938-10948; <a href="https://doi.org/10.1021/acscatal.8b02689">10.1021/acscatal.8b02689</a></li>
<li>Jones, Ryan J. R. and Wang, Yu, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190102-092233752">Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction</a>; Review of Scientific Instruments; Vol. 89; No. 12; Art. No. 124102; <a href="https://doi.org/10.1063/1.5049704">10.1063/1.5049704</a></li>
<li>Zhou, Lan and Shinde, Aniketa, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181017-090950761">Bi-containing n-FeWO_4 Thin Films Provide the Largest Photovoltage and Highest Stability for a sub-2 eV Band Gap Photoanode</a>; ACS Energy Letters; Vol. 3; No. 11; 2769-2774; <a href="https://doi.org/10.1021/acsenergylett.8b01514">10.1021/acsenergylett.8b01514</a></li>
<li>Zhou, Lan and Shinde, Aniketa, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180927-134054550">Balancing Surface Passivation and Catalysis with Integrated BiVO_4/(Fe-Ce)O_x Photoanodes in pH 9 Borate Electrolyte</a>; ACS Applied Energy Materials; Vol. 1; No. 10; 5766-5771; <a href="https://doi.org/10.1021/acsaem.8b01377">10.1021/acsaem.8b01377</a></li>
<li>Newhouse, P. F. and Guevarra, D., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180423-104401758">Combinatorial Alloying Improves Bismuth Vanadate Photoanodes via Reduced Monoclinic Distortion</a>; Energy and Environmental Science; Vol. 11; No. 9; 2444-2457; <a href="https://doi.org/10.1039/c8ee00179k">10.1039/c8ee00179k</a></li>
<li>Bai, Junwen and Ament, Sebastian, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180607-155251991">An Efficient Relaxed Projection Method for Constrained Non-negative Matrix Factorization with Application to the Phase-Mapping Problem in Materials Science</a>; ISBN 978-3-319-93030-5; Integration of Constraint Programming, Artificial Intelligence, and Operations Research; 52-62; <a href="https://doi.org/10.1007/978-3-319-93031-2_4">10.1007/978-3-319-93031-2_4</a></li>
<li>Suram, Santosh K. and Zhou, Lan, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180419-092221814">Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes</a>; Chemical Communications; Vol. 54; No. 36; 4625-4628; <a href="https://doi.org/10.1039/c7cc08002f">10.1039/c7cc08002f</a></li>
<li>Gregoire, John (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180412-075704210">Accelerated experimental materials discovery through integration with theory and artificial intelligence</a></li>
<li>Bai, Junwen and Xue, Yexiang, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180711-161340753">Phase Mapper: Accelerating Materials Discovery with AI</a>; AI Magazine; Vol. 39; No. 1; 15-26; <a href="https://doi.org/10.1609/aimag.v39i1.2785">10.1609/aimag.v39i1.2785</a></li>
<li>Haber, Joel and Guevarra, Dan, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180412-155950683">Development of solar fuels photoanodes through combinatorial integration of multifunctional Fe-Ce oxide coatings on BiVO4 as a function of coating composition, loading, and electrolyte</a></li>
<li>Haber, Joel and Guevarra, Dan, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180412-160639482">High throughput, multi-pH evaluation of earth-abundant pseudo-quaternary metal oxide catalysts for the oxygen evolution reaction</a></li>
<li>Suram, Santosh K. and Fackler, Sean W., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171204-074721984">Combinatorial Discovery of Lanthanum-Tantalum Oxynitride Solar Light Absorbers with Dilute Nitrogen for Solar Fuels Applications</a>; ACS Combinatorial Science; Vol. 20; No. 1; 26-34; <a href="https://doi.org/10.1021/acscombsci.7b00143">10.1021/acscombsci.7b00143</a></li>
<li>Gregoire, John M. and Boyd, David A., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180910-110703060">High Throughput Experimentation for the Discovery of Water Splitting Materials</a>; ISBN 978-1-78262-555-1; Integrated Solar Fuel Generators; 307-340; <a href="https://doi.org/10.1039/9781788010313-00305">10.1039/9781788010313-00305</a></li>
<li>Singh, Arunima K. and Zhou, Lan, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171024-154241789">Electrochemical Stability of Metastable Materials</a>; Chemistry of Materials; Vol. 29; No. 23; 10159-10167; <a href="https://doi.org/10.1021/acs.chemmater.7b03980">10.1021/acs.chemmater.7b03980</a></li>
<li>Newhouse, Paul F. and Reyes-Lillo, Sebastian E., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171115-095753143">Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode</a>; Chemistry of Materials; Vol. 29; No. 23; 10027-10036; <a href="https://doi.org/10.1021/acs.chemmater.7b03591">10.1021/acs.chemmater.7b03591</a></li>
<li>Shinde, Aniketa and Suram, Santosh K., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170914-131954119">Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments</a>; ACS Energy Letters; Vol. 2; No. 10; 2307-2312; <a href="https://doi.org/10.1021/acsenergylett.7b00607">10.1021/acsenergylett.7b00607</a></li>
<li>Liu, Guiji and Eichhorn, Johanna, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180502-083014371">Optical, morphological, and electrochemical multimodal characterization for integrated BiVO4 photoanodes</a></li>
<li>Bai, Junwen and Bjorck, Johan, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170711-130810289">Relaxation Methods for Constrained Matrix Factorization Problems: Solving the Phase Mapping Problem in Materials Discovery</a>; ISBN 978-3-319-59775-1; Integration of AI and OR Techniques in Constraint Programming; 104-112; <a href="https://doi.org/10.1007/978-3-319-59776-8_9">10.1007/978-3-319-59776-8_9</a></li>
<li>Gregoire, John (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170509-103759935">High throughput discovery of solar fuels photoanodes</a></li>
<li>Haber, Joel and Guevarra, Dan, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170505-132757377">Development of solar fuels photoanodes through combinatorial integration of Ni- La-Co-Ce oxide and Ni-Fe-Co-Ce oxide catalysts on BiVO₄</a></li>
<li>Newhouse, Paul and Boyd, David, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170508-105609944">Solar fuels photoanodes prepared by inkjet printing of copper vanadates</a></li>
<li>Yan, Qimin and Yu, Jie, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170306-150101767">Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 114; No. 12; 3040-3043; PMCID PMC5373381; <a href="https://doi.org/10.1073/pnas.1619940114">10.1073/pnas.1619940114</a></li>
<li>Green, M. L. and Choi, C. L., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170616-160215339">Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies</a>; Applied Physics Reviews; Vol. 4; No. 1; Art. No. 011105; <a href="https://doi.org/10.1063/1.4977487">10.1063/1.4977487</a></li>
<li>Favaro, Marco and Drisdell, Walter S., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170104-105146889">An Operando Investigation of (Ni-Fe-Co-Ce)O_x System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction</a>; ACS Catalysis; Vol. 7; No. 2; 1248-1258; <a href="https://doi.org/10.1021/acscatal.6b03126">10.1021/acscatal.6b03126</a></li>
<li>Suram, Santosh K. and Xue, Yexiang, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161205-104618599">Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System</a>; ACS Combinatorial Science; Vol. 19; No. 1; 37-46; <a href="https://doi.org/10.1021/acscombsci.6b00153">10.1021/acscombsci.6b00153</a></li>
<li>Suram, Santosh K. and Newhouse, Paul F., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161021-140906751">High Throughput Light Absorber Discovery, Part 2: Establishing Structure–Band Gap Energy Relationships</a>; ACS Combinatorial Science; Vol. 18; No. 11; 682-688; <a href="https://doi.org/10.1021/acscombsci.6b00054">10.1021/acscombsci.6b00054</a></li>
<li>Suram, Santosh K. and Newhouse, Paul F., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161021-113119506">High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis</a>; ACS Combinatorial Science; Vol. 18; No. 11; 673-681; <a href="https://doi.org/10.1021/acscombsci.6b00053">10.1021/acscombsci.6b00053</a></li>
<li>Shinde, A. and Li, G., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160909-133249863">The role of the CeO_2/BiVO_4 interface in optimized Fe-Ce oxide coatings for solar fuels photoanodes</a>; Journal of Materials Chemistry A; Vol. 4; No. 37; 14356-14363; <a href="https://doi.org/10.1039/c6ta04746g">10.1039/c6ta04746g</a></li>
<li>Shinde, Aniketa and Guevarra, Dan, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160907-090003256">Discovery of Fe–Ce Oxide/BiVO₄ Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings</a>; ACS Applied Materials &amp; Interfaces; Vol. 8; No. 36; 23696-23705; <a href="https://doi.org/10.1021/acsami.6b06714">10.1021/acsami.6b06714</a></li>
<li>Haber, Joel and Guevarra, Dan, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160622-150845222">Development of solar fuels photoanodes through combinatorial integration of Ni-La-Co-Ce oxide and Ni-Fe-Co-Ce oxide catalysts on BiVO₄</a></li>
<li>Newhouse, P. F. and Boyd, D. A., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160502-100311001">Solar fuel photoanodes prepared by inkjet printing of copper vanadates</a>; Journal of Materials Chemistry A; Vol. 4; No. 19; 7483-7494; <a href="https://doi.org/10.1039/C6TA01252C">10.1039/C6TA01252C</a></li>
<li>Hattrick-Simpers, Jason R. and Gregoire, John M., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160616-071550684">Perspective: Composition–structure–property mapping in high-throughput experiments: Turning data into knowledge</a>; APL Materials; Vol. 4; No. 5; Art. No. 053211; <a href="https://doi.org/10.1063/1.4950995">10.1063/1.4950995</a></li>
<li>Zhou, Lan and Yan, Qimin, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160323-102320816">Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation</a>; Physical Chemistry Chemical Physics; Vol. 18; No. 14; 9349-9352; <a href="https://doi.org/10.1039/C6CP00473C">10.1039/C6CP00473C</a></li>
<li>Guevarra, D. and Shinde, A., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20151221-160606238">Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO₄</a>; Energy and Environmental Science; Vol. 9; No. 2; 565-580; <a href="https://doi.org/10.1039/c5ee03488d">10.1039/c5ee03488d</a></li>
<li>Suram, Santosh K. and Pesenson, Meyer Z., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170718-103549107">High Throughput Combinatorial Experimentation + Informatics = Combinatorial Science</a>; ISBN 978-3-319-23870-8; Information Science for Materials Discovery and Design; 271-300; <a href="https://doi.org/10.1007/978-3-319-23871-5_14">10.1007/978-3-319-23871-5_14</a></li>
<li>Zhou, Lan and Yan, Qimin, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150902-125617374">High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V_2O_5 System</a>; Advanced Energy Materials; Vol. 5; No. 22; Art. No. 1500968; <a href="https://doi.org/10.1002/aenm.201500968">10.1002/aenm.201500968</a></li>
<li>Fenwick, Aidan Q. and Gregoire, John M., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160104-105432412">Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device</a>; Journal of Photochemistry and Photobiology B: Biology; Vol. 152; 47-57; <a href="https://doi.org/10.1016/j.jphotobiol.2014.12.019">10.1016/j.jphotobiol.2014.12.019</a></li>
<li>Zhou, Lan and Suram, Santosh K., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20151019-090734492">Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides</a>; Journal of Materials Research; Vol. 30; No. 19; 2928-2933; <a href="https://doi.org/10.1557/jmr.2015.140">10.1557/jmr.2015.140</a></li>
<li>Chan, Candace K. and Tüysüz, Harun, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20151027-135221593">Advanced and In Situ Analytical Methods for Solar Fuel Materials</a>; ISBN 978-3-319-23098-6; Solar Energy for Fuels; 253-324; <a href="https://doi.org/10.1007/128_2015_650">10.1007/128_2015_650</a></li>
<li>Haber, Joel A. and Anzenburg, Eitan, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150615-085042878">Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design</a>; Advanced Energy Materials; Vol. 5; No. 10; Art. No. 1402307; <a href="https://doi.org/10.1002/aenm.201402307">10.1002/aenm.201402307</a></li>
<li>Yan, Qimin and Li, Guo, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150519-092604842">Mn_2V_2O_7: An Earth Abundant Light Absorber for Solar Water Splitting</a>; Advanced Energy Materials; Vol. 5; No. 8; Art. No. 1401840; <a href="https://doi.org/10.1002/aenm.201401840">10.1002/aenm.201401840</a></li>
<li>Suram, Santosh K. and Haber, Joel A., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150309-091323359">Generating Information-Rich High-Throughput Experimental Materials Genomes using Functional Clustering via Multitree Genetic Programming and Information Theory</a>; ACS Combinatorial Science; Vol. 17; No. 4; 224-233; <a href="https://doi.org/10.1021/co5001579">10.1021/co5001579</a></li>
<li>McCluskey, Patrick J. and Xiao, Kechao, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150416-095057322">Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize Ni–Ti–Hf high-temperature shape memory alloys</a>; Thermochimica Acta; Vol. 603; 53-62; <a href="https://doi.org/10.1016/j.tca.2014.07.023">10.1016/j.tca.2014.07.023</a></li>
<li>Shinde, Aniketa and Jones, Ryan J. R., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141117-094914554">High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O_x Composition Space</a>; Electrocatalysis; Vol. 6; No. 2; 229-236; <a href="https://doi.org/10.1007/s12678-014-0237-7">10.1007/s12678-014-0237-7</a></li>
<li>Mitrovic, Slobodan and Soedarmadji, Edwin, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150120-090415724">Colorimetric Screening for High-Throughput Discovery of Light Absorbers</a>; ACS Combinatorial Science; Vol. 17; No. 3; 176-181; <a href="https://doi.org/10.1021/co500151u">10.1021/co500151u</a></li>
<li>Haber, Joel and Guevarra, Dan, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150422-095105837">Enabling solar fuels technology by high throughput discovery of earth abundant oxygen evolution reaction catalysts</a>; Abstracts of Papers of the American Chemical Society; Vol. 249; INOR-45</li>
<li>Suram, Santosh K. and Zhou, Lan, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150323-110035126">Combinatorial thin film composition mapping using three dimensional deposition profiles</a>; Review of Scientific Instruments; Vol. 86; No. 3; Art. No. 033904; <a href="https://doi.org/10.1063/1.4914466">10.1063/1.4914466</a></li>
<li>Shinde, Aniketa and Guevarra, Dan, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150327-092659678">Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements</a>; Journal of Materials Research; Vol. 30; No. 3; 442-450; <a href="https://doi.org/10.1557/jmr.2014.296">10.1557/jmr.2014.296</a></li>
<li>Pesenson, Misha Z. and Suram, Santosh K., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150120-090320534">Statistical Analysis and Interpolation of Compositional Data in Materials Science</a>; ACS Combinatorial Science; Vol. 17; No. 2; 130-136; <a href="https://doi.org/10.1021/co5001458">10.1021/co5001458</a></li>
<li>Jones, Ryan J. R. and Shinde, Aniketa, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150126-085330620">Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts</a>; ACS Combinatorial Science; Vol. 17; No. 2; 71-75; <a href="https://doi.org/10.1021/co500148p">10.1021/co500148p</a></li>
<li>Mitrovic, Slobodan and Cornell, Earl W., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150120-081217429">High-throughput on-the-fly scanning ultraviolet-visible dual-sphere spectrometer</a>; Review of Scientific Instruments; Vol. 86; No. 1; Art. No. 013904; <a href="https://doi.org/10.1063/1.4905365">10.1063/1.4905365</a></li>
<li>Soriaga, Manuel P. and Baricuatro, Jack H., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140917-091954518">Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis</a>; Surface Science; Vol. 631; 285-294; <a href="https://doi.org/10.1016/j.susc.2014.06.028">10.1016/j.susc.2014.06.028</a></li>
<li>Kim, Youn-Geun and Baricuatro, Jack Hess, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141215-100027935">The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO_2RR Potential: A Study by Operando EC-STM</a>; Langmuir; Vol. 30; No. 50; 15053-15056; <a href="https://doi.org/10.1021/la504445g">10.1021/la504445g</a></li>
<li>Gregoire, J. M. and Van Campen, D. G., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141205-093300451">High-throughput synchrotron X-ray diffraction for combinatorial phase mapping</a>; Journal of Synchrotron Radiation; Vol. 21; No. 6; 1262-1268; <a href="https://doi.org/10.1107/S1600577514016488">10.1107/S1600577514016488</a></li>
<li>Haber, Joel A. and Guevarra, Dan, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141201-102711064">Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni–La–Co–Ce Oxide Composition Space</a>; ChemElectroChem; Vol. 1; No. 10; 1613-1617; <a href="https://doi.org/10.1002/celc.201402149">10.1002/celc.201402149</a></li>
<li>Haber, Joel A. and Xiang, Chengxiang, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140731-100438286">High-Throughput Mapping of the Electrochemical Properties of (Ni-Fe-Co-Ce)O_x Oxygen-Evolution Catalysts</a>; ChemElectroChem; Vol. 1; No. 3; 524-528; <a href="https://doi.org/10.1002/celc.201300229">10.1002/celc.201300229</a></li>
<li>Xiang, Chengxiang and Haber, Joel, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140218-144233923">Mapping Quantum Yield for (Fe−Zn−Sn−Ti)O_x Photoabsorbers Using a High Throughput Photoelectrochemical Screening System</a>; ACS Combinatorial Science; Vol. 16; No. 3; 120-127; <a href="https://doi.org/10.1021/co400081w">10.1021/co400081w</a></li>
<li>Haber, Joel A. and Jung, Suho, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140425-081906501">Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis</a></li>
<li>Xiang, Chengxiang and Suram, Santosh K., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140127-093320786">High-Throughput Bubble Screening Method for Combinatorial Discovery of Electrocatalysts for Water Splitting</a>; ACS Combinatorial Science; Vol. 16; No. 2; 47-52; <a href="https://doi.org/10.1021/co400151h">10.1021/co400151h</a></li>
<li>Haber, Joel A. and Cai, Yun, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140325-130923791">Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis</a>; Energy and Environmental Science; Vol. 7; No. 2; 682-688; <a href="https://doi.org/10.1039/C3EE43683G">10.1039/C3EE43683G</a></li>
<li>Gregoire, J. M. and Haber, J. A., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140617-094404706">Enabling Solar Fuels Technology With High Throughput Experimentation</a>; MRS Proceedings; Vol. 1654; Art. No. opl.2014.29; <a href="https://doi.org/10.1557/opl.2014.29">10.1557/opl.2014.29</a></li>
<li>Xiao, Kechao and Gregoire, John M., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130830-140035652">Scanning AC nanocalorimetry combined with in-situ x-ray diffraction</a>; Journal of Applied Physics; Vol. 113; No. 24; Art. No. 243501; PMCID PMC3676369; <a href="https://doi.org/10.1063/1.4811686">10.1063/1.4811686</a></li>
<li>Gregoire, J. M. and Xiang, C., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140609-083826658">Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts</a>; ECS Transactions; Vol. 50; No. 49; 9-20; <a href="https://doi.org/10.1149/05049.0009ecst">10.1149/05049.0009ecst</a></li>
<li>Duan, H. and Yuan, C. C., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200407-130730098">High-Throughput Measurement of Ionic Conductivity in Composition-Spread Thin Films</a>; ACS Combinatorial Science; Vol. 15; No. 6; 273-277; <a href="https://doi.org/10.1021/co4000375">10.1021/co4000375</a></li>
<li>Gregoire, John M. and Xiao, Kechao, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130813-135504917">In-situ X-ray diffraction combined with scanning AC nanocalorimetry applied to a Fe_(0.84)Ni_(0.16) thin-film sample</a>; Applied Physics Letters; Vol. 102; No. 20; Art. No. 201902; PMCID PMC3676369; <a href="https://doi.org/10.1063/1.4806972">10.1063/1.4806972</a></li>
<li>Gregoire, John M. and Xiang, Chengxiang, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130509-154116203">Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements</a>; Review of Scientific Instruments; Vol. 84; No. 2; Art. No. 024102; <a href="https://doi.org/10.1063/1.4790419">10.1063/1.4790419</a></li>
<li>Gregoire, J. M. and Xiang, C., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130523-112147351">Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts</a>; Journal of the Electrochemical Society; Vol. 160; No. 4; F337-F342; <a href="https://doi.org/10.1149/2.035304jes">10.1149/2.035304jes</a></li>
<li>Xiao, Kechao and Gregoire, John M., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130122-094036061">A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials</a>; Review of Scientific Instruments; Vol. 83; No. 11; Art. No. 114901; <a href="https://doi.org/10.1063/1.4763571">10.1063/1.4763571</a></li>
<li>Gregoire, John M. and Dale, Darren, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200407-131832723">A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data</a>; Review of Scientific Instruments; Vol. 82; No. 1; Art. No. 015105; <a href="https://doi.org/10.1063/1.3505103">10.1063/1.3505103</a></li>
<li>Gregoire, John M. and Dale, Darren, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200407-132649138">Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence</a>; Journal of Vacuum Science and Technology A; Vol. 28; No. 5; 1279-1280; PMCID PMC4043122; <a href="https://doi.org/10.1116/1.3478668">10.1116/1.3478668</a></li>
<li>Roncallo, Scilla and Karimi, Omeed, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200407-134048387">High Throughput X-ray Diffraction Analysis of Combinatorial Polycrystalline Thin Film Libraries</a>; Analytical Chemistry; Vol. 82; No. 11; 4564-4569; <a href="https://doi.org/10.1021/ac100572h">10.1021/ac100572h</a></li>
<li>Gregoire, John M. and Dale, Darren, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200409-115739417">High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films</a>; Review of Scientific Instruments; Vol. 80; No. 12; Art. No. 123905; <a href="https://doi.org/10.1063/1.3274179">10.1063/1.3274179</a></li>
<li>Gregoire, John M. and van Dover, R. B., el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200409-115739507">Getter sputtering system for high-throughput fabrication of composition spreads</a>; Review of Scientific Instruments; Vol. 78; No. 7; Art. No. 072212; <a href="https://doi.org/10.1063/1.2755967">10.1063/1.2755967</a></li>
</ul>