<h1>Fu, Ross</h1> <h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Fu, Ross and Nielsen, Robert J., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190528-110238542">DFT Mechanistic Study of Methane Mono-Esterification by Hypervalent Iodine Alkane Oxidation Process</a>; Journal of Physical Chemistry C; Vol. 123; No. 25; 15674-15684; <a href="https://doi.org/10.1021/acs.jpcc.9b04239">10.1021/acs.jpcc.9b04239</a></li> <li>Schwartz, Nichole and Boaz, Nicholas, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181108-144800620">Hypervalent iodine oxides and chloride for the conversion of light alkanes to mono-functionalized products: A radical-based process for selective partial oxidation</a></li> <li>Schwartz, Nichole A. and Boaz, Nicholas C., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180314-075021354">Mechanism of Hydrocarbon Functionalization by an Iodate/Chloride System: The Role of Ester Protection</a>; ACS Catalysis; Vol. 8; No. 4; 3138-3149; <a href="https://doi.org/10.1021/acscatal.7b04397">10.1021/acscatal.7b04397</a></li> <li>Gunnoe, T. and Groves, John, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180705-092742034">Conversion of light alkanes to alkyl esters and chlorides using iodine oxides and chlorides: Radical versus non-radical pathways</a></li> <li>Schwartz, Nichole and Kalman, Steven, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180713-125627396">Photolytic conversion of light alkanes to alkyl esters by iodine oxides and chloride salts in non-superacidic media</a></li> <li>Schwartz, Nichole and Fortman, George, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180502-084514297">Selective partial oxidation of light alkanes using iodine oxides and halides</a></li> <li>Gunnoe, T. and Groves, John, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180501-151359348">Partial oxidation of light alkanes by iodine oxides</a></li> <li>Fu, Ross and Goddard, William A., III, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161129-090636992">Computational design of a pincer phosphinito vanadium ((OPO)V) propane monoxygenation homogeneous catalyst based on the reduction-coupled oxo activation (ROA) mechanism</a>; ACS Catalysis; Vol. 7; No. 1; 356-364; <a href="https://doi.org/10.1021/acscatal.6b02781">10.1021/acscatal.6b02781</a></li> <li>Webster-Gardiner, Michael S. and Piszel, Paige E., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160803-142334974">Electrophilic Rh^I catalysts for arene H/D exchange in acidic media: evidence for an electrophilic aromatic substitution mechanism</a>; Journal of Molecular Catalysis A: Chemical; Vol. 426; 381-388; <a href="https://doi.org/10.1016/j.molcata.2016.07.045">10.1016/j.molcata.2016.07.045</a></li> <li>Munz, Dominik and Webster-Gardiner, Michael, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150313-150419261">Proton or Metal? The H/D Exchange of Arenes in Acidic Solvents</a>; ACS Catalysis; Vol. 5; No. 2; 769-775; <a href="https://doi.org/10.1021/cs501620f">10.1021/cs501620f</a></li> <li>Fu, Ross and O'Reilly, Matthew E., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141201-103411271">Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization</a>; Chemistry: a European Journal; Vol. 21; No. 3; 1286-1293; <a href="https://doi.org/10.1002/chem.201405460">10.1002/chem.201405460</a></li> <li>Webster-Gardiner, Michael S. and Fu, Ross, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150220-102307992">Arene C–H activation using Rh(I) catalysts supported by bidentate nitrogen chelates</a>; Catalysis Science and Technology; Vol. 5; No. 1; 96-100; <a href="https://doi.org/10.1039/c4cy00972j">10.1039/c4cy00972j</a></li> <li>Fu, Ross and Nielsen, Robert J., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141117-094150749">DFT Virtual Screening Identifies Rhodium–Amidinate Complexes As Potential Homogeneous Catalysts for Methane-to-Methanol Oxidation</a>; ACS Catalysis; Vol. 4; No. 12; 4455-4465; <a href="https://doi.org/10.1021/cs5005322">10.1021/cs5005322</a></li> <li>O'Reilly, Matthew E. and Fu, Ross, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141202-075224286">Long-Range C–H Bond Activation by Rh^(III)-Carboxylates</a>; Journal of the American Chemical Society; Vol. 136; No. 42; 14690-14693; <a href="https://doi.org/10.1021/ja508367m">10.1021/ja508367m</a></li> <li>Cheng, Mu-Jeng and Goddard, William A., III, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140729-083058804">The Reduction-Coupled Oxo Activation (ROA) Mechanism Responsible for the Catalytic Selective Activation and Functionalization of n-Butane to Maleic Anhydride by Vanadium Phosphate Oxide</a>; Topics in Catalysis; Vol. 57; No. 14-16; 1171-1187; <a href="https://doi.org/10.1007/s11244-014-0284-6">10.1007/s11244-014-0284-6</a></li> <li>Cheng, Mu-Jeng and Fu, Ross, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140109-120001059">Design and validation of non-metal oxo complexes for C–H activation</a>; Chemical Communications; Vol. 50; No. 14; 1748-1750; <a href="https://doi.org/10.1039/c3cc47502f">10.1039/c3cc47502f</a></li> <li>Fu, Ross and Bercaw, John E., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120124-091855514">Intra- and Intermolecular C−H Activation by Bis(phenolate)pyridineiridium(III) Complexes</a>; Organometallics; Vol. 30; No. 24; 6751-6765; <a href="https://doi.org/10.1021/om201069k">10.1021/om201069k</a></li> </ul>