<h1>Dahlquist, Frederick Willis</h1> <h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Quezada, Cindy M. and Hamel, Damon J., el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:QUEjbc05">Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA</a>; Journal of Biological Chemistry; Vol. 280; No. 34; 30581-30585; <a href="https://doi.org/10.1074/jbc.M505316200">10.1074/jbc.M505316200</a></li> <li>Griswold, Ian J. and Zhou, Hongjun, el al. (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150407-123014690">The solution structure and interactions of CheW from Thermotoga maritima</a>; Nature Structural Biology; Vol. 9; No. 2; 121-125; <a href="https://doi.org/10.1038/nsb753">10.1038/nsb753</a></li> <li>Usher, Ken C. and de la Cruz, A. F., el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170409-082224546">Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability</a>; Protein Science; Vol. 7; No. 2; 403-412; PMCID PMC2143910; <a href="https://doi.org/10.1002/pro.5560070221">10.1002/pro.5560070221</a></li> <li>Zhou, Hongjun and McEvoy, Megan M., el al. (1996) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171129-105830297">Phosphotransfer and CheY-Binding Domains of the Histidine Autokinase CheA Are Joined by a Flexible Linker</a>; Biochemistry; Vol. 35; No. 2; 433-443; <a href="https://doi.org/10.1021/bi951960e">10.1021/bi951960e</a></li> <li>Zhou, Hongjun and Lowry, David F., el al. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180206-065820046">NMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: assignments, secondary structure, general fold, and backbone dynamics</a>; Biochemistry; Vol. 34; No. 42; 13858-13870; <a href="https://doi.org/10.1021/bi00042a018">10.1021/bi00042a018</a></li> <li>Swanson, Ronald V. and Lowry, David F., el al. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150624-142751543">Localized perturbations in CheY structure monitored by NMR identify a CheA binding interface</a>; Nature Structural Biology; Vol. 2; No. 10; 906-910; <a href="https://doi.org/10.1038/nsb1095-906">10.1038/nsb1095-906</a></li> <li>Kehry, Marilyn R. and Bond, Martha W., el al. (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KEHpnas83">Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 80; No. 12; 3599-3603</li> <li>Raftery, M. A. and Dahlquist, F. W., el al. (1969) <a href="https://resolver.caltech.edu/CaltechAUTHORS:RAFpnas69">The use of nuclear magnetic resonance to describe relative modes of binding to lysozyme of homologous inhibitors and related substrates</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 62; No. 1; 44-51</li> <li>Dahlquist, F. W. and Rand-Meir, T., el al. (1968) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DAHpnas68">Demonstration of carbonium ion intermediate during lysozyme catalysis</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 61; No. 4; 1194-1198</li> <li>Raftery, M. A. and Dahlquist, F. W., el al. (1968) <a href="https://resolver.caltech.edu/CaltechAUTHORS:RAFjbc68">A Proton Magnetic Resonance Study of the Association of Lysozyme with Monosaccharide Inhibitors</a>; Journal of Biological Chemistry; Vol. 243; No. 16; 4175-4180</li> </ul>