<h1>Chomyn, Anne</h1>
<h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2>
<ul>
<li>Hashimoto, Masami and Bacman, Sandra R., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150721-100512606">MitoTALENs: A general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases</a>; Molecular Therapy; Vol. 23; No. 10; 1592-1599; PMCID PMC4817924; <a href="https://doi.org/10.1038/mt.2015.126">10.1038/mt.2015.126</a></li>
<li>Chen, Ai and Raule, Nicola, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20121218-075633343">Decreased Reactive Oxygen Species Production in Cells with Mitochondrial Haplogroups Associated with Longevity</a>; PLoS ONE; Vol. 7; No. 10; Art. No. e46473; PMCID PMC3483264; <a href="https://doi.org/10.1371/journal.pone.0046473">10.1371/journal.pone.0046473</a></li>
<li>Chen, Hsiuchen and Vermulst, Marc, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100512-141625107">Mitochondrial Fusion Is Required for mtDNA Stability in Skeletal Muscle and Tolerance of mtDNA Mutations</a>; Cell; Vol. 141; No. 2; 280-289; PMCID PMC2876819; <a href="https://doi.org/10.1016/j.cell.2010.02.026">10.1016/j.cell.2010.02.026</a></li>
<li>Hájek, Petr and Chomyn, Anne, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:HAJjbc07">Identification of a Novel Mitochondrial Complex Containing Mitofusin 2 and Stomatin-like Protein 2</a>; Journal of Biological Chemistry; Vol. 282; No. 8; 5670-5681; <a href="https://doi.org/10.1074/jbc.M608168200">10.1074/jbc.M608168200</a></li>
<li>Duvezin-Caubet, Stéphane and Jagasia, Ravi, el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DUVjbc06">Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology</a>; Journal of Biological Chemistry; Vol. 281; No. 49; 37972-37979; <a href="https://doi.org/10.1074/jbc.M606059200">10.1074/jbc.M606059200</a></li>
<li>Chen, Hsiuchen and Chomyn, Anne, el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHEjbc05">Disruption of fusion results in mitochondrial heterogeneity and dysfunction</a>; Journal of Biological Chemistry; Vol. 280; No. 28; 26185-26192; <a href="https://doi.org/10.1074/jbc.M503062200">10.1074/jbc.M503062200</a></li>
<li>Duan, Shili and Hájek, Petr, el al. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DUAjbc03">Mitochondrial Outer Membrane Permeability Change and Hypersensitivity to Digitonin Early in Staurosporine-induced Apoptosis</a>; Journal of Biological Chemistry; Vol. 278; No. 2; 1346-1353; <a href="https://doi.org/10.1074/jbc.M209269200">10.1074/jbc.M209269200</a></li>
<li>Bai, Yidong and Hájek, Petr, el al. (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:BAIjbc01">Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene</a>; Journal of Biological Chemistry; Vol. 276; No. 42; 38808-38813</li>
<li>Chomyn, Anne and Enríquez, José Antonio, el al. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHOjbc00">The Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episode Syndrome-associated Human Mitochondrial tRNALeu(UUR) Mutation Causes Aminoacylation Deficiency and Concomitant Reduced Association of mRNA with Ribosomes</a>; Journal of Biological Chemistry; Vol. 275; No. 25; 19198-19209; <a href="https://doi.org/10.1074/jbc.M908734199">10.1074/jbc.M908734199</a></li>
<li>Helm, Mark and Florentz, Catherine, el al. (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:HELnar99">Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR)</a>; Nucleic Acids Research; Vol. 27; No. 3; 756-763; <a href="https://doi.org/10.1093/nar/27.3.756">10.1093/nar/27.3.756</a></li>
<li>Chomyn, Anne (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20111222-100052561">The Myoclonic Epilepsy and Ragged-Red Fiber Mutation Provides New Insights into Human Mitochondrial Function and Genetics</a>; American Journal of Human Genetics; Vol. 62; No. 4; 745-751; <a href="https://doi.org/10.1086/301813">10.1086/301813</a></li>
<li>Zhou, Li and Chomyn, Anne, el al. (1997) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191030-134818569">Myoclonic Epilepsy and Ragged Red Fibers (MERRF) Syndrome: Selective Vulnerability of CNS Neurons Does Not Correlate with the Level of Mitochondrial tRNA^(lys) Mutation in Individual Neuronal Isolates</a>; Journal of Neuroscience; Vol. 17; No. 20; 7746-7753; PMCID PMC6793887; <a href="https://doi.org/10.1523/jneurosci.17-20-07746.1997">10.1523/jneurosci.17-20-07746.1997</a></li>
<li>Hofhaus, Götz and Johns, Donald R., el al. (1996) <a href="https://resolver.caltech.edu/CaltechAUTHORS:HOFjbc96">Respiration and Growth Defects in Transmitochondrial Cell Lines Carrying the 11778 Mutation Associated with Leber's Hereditary Optic Neuropathy</a>; Journal of Biological Chemistry; Vol. 271; No. 22; 13155-13161</li>
<li>Enriquez, José Antonio and Chomyn, Anne, el al. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150624-150439462">MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA^(Lys) and premature translation termination</a>; Nature Genetics; Vol. 10; No. 1; 47-55; <a href="https://doi.org/10.1038/ng0595-47">10.1038/ng0595-47</a></li>
<li>Yoneda, Makoto and Chomyn, Anne, el al. (1992) <a href="https://resolver.caltech.edu/CaltechAUTHORS:YONpnas92">Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 89; No. 23; 11164-11168; PMCID PMC50510; <a href="https://doi.org/10.1073/pnas.89.23.11164">10.1073/pnas.89.23.11164</a></li>
<li>Chomyn, A. and Martinuzzi, A., el al. (1992) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120309-160913724">MELAS Mutation in mtDNA Binding Site for Transcription Termination Factor Causes Defects in Protein Synthesis and in Respiration but no Change in Levels of Upstream and Downstream Mature Transcripts</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 89; No. 10; 4221-4225; PMCID PMC49053; <a href="https://doi.org/10.1073/pnas.89.10.4221">10.1073/pnas.89.10.4221</a></li>
<li>Chomyn, Anne and Meola, Giovanni, el al. (1991) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120418-153850946">In Vitro Genetic Transfer of Protein Synthesis and Respiration Defects to Mitochondrial DNA-Less Cells with Myopathy-Patient Mitochondria</a>; Molecular and Cellular Biology; Vol. 11; No. 4; 2236-2244; PMCID PMC359920; <a href="https://doi.org/10.1128/MCB.11.4.2236">10.1128/MCB.11.4.2236</a></li>
<li>Chomyn, Anne and Patel, Salil D., el al. (1988) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHOjbc88">The site of synthesis of the iron-sulfur subunits of the flavoprotein and iron-protein fractions of human NADH dehydrogenase</a>; Journal of Biological Chemistry; Vol. 263; No. 31; 16395-16400</li>
<li>Chomyn, Anne and Cleeter, Michael W. J., el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150130-124807876">URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit</a>; Science; Vol. 234; No. 4776; 614-618; <a href="https://doi.org/10.1126/science.3764430">10.1126/science.3764430</a></li>
<li>Mariottini, Paolo and Chomyn, Anne, el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MARpnas86b">Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L, and 5 of human mitochondrial DNA</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 83; No. 6; 1563-1567; PMCID PMC323123; <a href="https://doi.org/10.1073/pnas.83.6.1563">10.1073/pnas.83.6.1563</a></li>
<li>Mariottini, Paolo and Chomyn, Anne, el al. (1986) <a href="https://resolver.caltech.edu/CaltechAUTHORS:MARjbc86">Antibodies against the COOH-terminal undecapeptide of subunit II, but not those against the NH2-terminal decapeptide, immunoprecipitate the whole human cytochrome c oxidase complex</a>; Journal of Biological Chemistry; Vol. 261; No. 7; 3355-3362</li>
<li>Chomyn, Anne and Mariottini, Paolo, el al. (1983) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHOpnas83">Identification of the polypeptides encoded in the ATPase 6 gene and in the unassigned reading frames 1 and 3 of human mtDNA</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 80; No. 18; 5535-5539; PMCID PMC384292; <a href="https://doi.org/10.1073/pnas.80.18.5535">10.1073/pnas.80.18.5535</a></li>
<li>Chomyn, Anne and Hunkapiller, Michael W., el al. (1981) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHOnar81">Alignment of the amino terminal amino acid sequence of human cytochrome c oxidase subunits I and II with the sequence of their putative mRNAs</a>; Nucleic Acids Research; Vol. 9; No. 4; 867-877</li>
</ul>