<h1>Cheng, Mu-Jeng</h1>
<h2>Article from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2>
<ul>
<li>Zhang, Haochen and Li, Chunsong, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230725-48998000.5">Activation of light alkanes at room temperature and ambient pressure</a>; Nature Catalysis; <a href="https://doi.org/10.1038/s41929-023-00990-9">10.1038/s41929-023-00990-9</a></li>
<li>He, Ming and Chang, Xiaoxia, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220520-388227000">Selective Enhancement of Methane Formation in Electrochemical CO₂ Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu</a>; ACS Catalysis; Vol. 12; No. 10; 6036-6046; <a href="https://doi.org/10.1021/acscatal.2c00087">10.1021/acscatal.2c00087</a></li>
<li>Zhang, Haochen and Li, Chunsong, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210308-132156702">Selective Activation of Propane Using Intermediates Generated during Water Oxidation</a>; Journal of the American Chemical Society; Vol. 143; No. 10; 3967-3974; <a href="https://doi.org/10.1021/jacs.1c00377">10.1021/jacs.1c00377</a></li>
<li>He, Ming and Li, Chunsong, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200803-093757604">Oxygen induced promotion of electrochemical reduction of CO₂ via co-electrolysis</a>; Nature Communications; Vol. 11; 3844; PMCID PMC7395777; <a href="https://doi.org/10.1038/s41467-020-17690-8">10.1038/s41467-020-17690-8</a></li>
<li>Chen, Liang-Yu and Kuo, Tung-Chun, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190806-124541228">Mechanism and kinetics for both thermal and electrochemical reduction of N_2 catalysed by Ru(0001) based on quantum mechanics</a>; Physical Chemistry Chemical Physics; Vol. 21; No. 32; 17605-17612; <a href="https://doi.org/10.1039/c9cp03187a">10.1039/c9cp03187a</a></li>
<li>Zhang, Haochen and Chang, Xiaoxia, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190730-090851748">Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane</a>; Nature Communications; Vol. 10; Art. No. 3340; PMCID PMC6659690; <a href="https://doi.org/10.1038/s41467-019-11292-9">10.1038/s41467-019-11292-9</a></li>
<li>Li, Jing and Chang, Kuan, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190418-104651423">Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts</a>; ACS Catalysis; Vol. 9; No. 6; 4709-4718; <a href="https://doi.org/10.1021/acscatal.9b00099">10.1021/acscatal.9b00099</a></li>
<li>Paeth, Matthew and Tyndall, Sam B., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190125-155529881">Csp^3-Csp^3 Bond-Forming Reductive Elimination from Well-Defined Copper(III) Complexes</a>; Journal of the American Chemical Society; Vol. 141; No. 7; 3153-3159; <a href="https://doi.org/10.1021/jacs.8b12632">10.1021/jacs.8b12632</a></li>
<li>Zhang, Haochen and Goddard, William A., III, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180110-102226313">The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO_2 reduction and hydrogen evolution</a>; Physical Chemistry Chemical Physics; Vol. 20; No. 4; 2549-2557; <a href="https://doi.org/10.1039/c7cp08153g">10.1039/c7cp08153g</a></li>
<li>O'Leary, Willis C. and Goddard, William A., III, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170919-081753764">The Dual-Phase Mechanism for the Catalytic Conversion of n-Butane to Maleic Anhydride by the Vanadyl Pyrophosphate Heterogeneous Catalyst</a>; Journal of Physical Chemistry C; Vol. 121; No. 43; 24069-24076; <a href="https://doi.org/10.1021/acs.jpcc.7b07881">10.1021/acs.jpcc.7b07881</a></li>
<li>Liu, Wei and Cheng, Mu-Jeng, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170515-132737377">Probing the C-O bond-formation step in metalloporphyrin catalyzed C-H oxygenation reactions</a>; ACS Catalysis; Vol. 7; No. 6; 4182-4188; <a href="https://doi.org/10.1021/acscatal.7b00655">10.1021/acscatal.7b00655</a></li>
<li>Fu, Ross and Goddard, William A., III, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161129-090636992">Computational design of a pincer phosphinito vanadium ((OPO)V) propane monoxygenation homogeneous catalyst based on the reduction-coupled oxo activation (ROA) mechanism</a>; ACS Catalysis; Vol. 7; No. 1; 356-364; <a href="https://doi.org/10.1021/acscatal.6b02781">10.1021/acscatal.6b02781</a></li>
<li>Cheng, Mu-Jeng and Goddard, William A., III (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160805-154511939">The Mechanism of Alkane Selective Oxidation by the M1 Phase of Mo–V–Nb–Te Mixed Metal Oxides: Suggestions for Improved Catalysts</a>; Topics in Catalysis; Vol. 59; No. 17; 1506-1517; <a href="https://doi.org/10.1007/s11244-016-0669-9">10.1007/s11244-016-0669-9</a></li>
<li>Cheng, Mu-Jeng and Goddard, William A., III (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20151019-111246285">In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane</a>; Journal of the American Chemical Society; Vol. 137; No. 41; 13224-13227; <a href="https://doi.org/10.1021/jacs.5b07073">10.1021/jacs.5b07073</a></li>
<li>Cheng, Mu-Jeng and Nielsen, Robert J., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140808-083238459">A homolytic oxy-functionalization mechanism: intermolecular hydrocarbyl migration from M–R to vanadate oxo</a>; Chemical Communications; Vol. 50; No. 75; 10994-10996; <a href="https://doi.org/10.1039/c4cc03067b">10.1039/c4cc03067b</a></li>
<li>Cheng, Mu-Jeng and Goddard, William A., III, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140729-083058804">The Reduction-Coupled Oxo Activation (ROA) Mechanism Responsible for the Catalytic Selective Activation and Functionalization of n-Butane to Maleic Anhydride by Vanadium Phosphate Oxide</a>; Topics in Catalysis; Vol. 57; No. 14-16; 1171-1187; <a href="https://doi.org/10.1007/s11244-014-0284-6">10.1007/s11244-014-0284-6</a></li>
<li>An, Qi and Cheng, Mu-Jeng, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140129-133221585">CCI Radicals As a Carbon Source for Diamond Thin Film Deposition</a>; Journal of Physical Chemistry Letters; Vol. 2014; No. 5; 481-484; <a href="https://doi.org/10.1021/jz402527y">10.1021/jz402527y</a></li>
<li>Cheng, Mu-Jeng and Fu, Ross, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140109-120001059">Design and validation of non-metal oxo complexes for C–H activation</a>; Chemical Communications; Vol. 50; No. 14; 1748-1750; <a href="https://doi.org/10.1039/c3cc47502f">10.1039/c3cc47502f</a></li>
<li>Cheng, Mu-Jeng and Goddard, William A., III (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130502-132101627">The Critical Role of Phosphate in Vanadium Phosphate Oxide for the Catalytic Activation and Functionalization of n-Butane to Maleic Anhydride</a>; Journal of the American Chemical Society; Vol. 135; No. 12; 4600-4603; <a href="https://doi.org/10.1021/ja3115746">10.1021/ja3115746</a></li>
<li>Jaramillo-Botero, Andres and An, Qi, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130103-093549050">Hypervelocity Impact Effect of Molecules from Enceladus' Plume and Titan's Upper Atmosphere on NASA's Cassini Spectrometer from Reactive Dynamics Simulation</a>; Physical Review Letters; Vol. 109; No. 21; Art. No. 213201; <a href="https://doi.org/10.1103/PhysRevLett.109.213201">10.1103/PhysRevLett.109.213201</a></li>
<li>Liu, Wei and Huang, Xiongyi, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20121127-142950090">Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin</a>; Science; Vol. 337; No. 6100; 1322-1325; <a href="https://doi.org/10.1126/science.1222327">10.1126/science.1222327</a></li>
<li>Cheng, Mu-Jeng and Bischof, Steven M., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120410-080644226">The para-substituent effect and pH-dependence of the organometallic Baeyer–Villiger oxidation of rhenium–carbon bonds</a>; Dalton Transactions; Vol. 41; No. 13; 3758-3763; <a href="https://doi.org/10.1039/c2dt11984f">10.1039/c2dt11984f</a></li>
<li>Young, Kenneth J. H. and Mironov, Oleg A., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20111025-104606894">Synthesis and Characterization of the k^2-acac-O,O Complex
Os_(IV)(acac)_2PhCl and Study of CH Activation with Benzene</a>; Organometallics; Vol. 30; No. 19; 5088-5094; <a href="https://doi.org/10.1021/om1010512">10.1021/om1010512</a></li>
<li>Cheng, Mu-Jeng and Nielsen, Robert J., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110512-100508849">The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory</a>; Physical Chemistry Chemical Physics; Vol. 13; No. 20; 9831-9838; <a href="https://doi.org/10.1039/C0CP02777D">10.1039/C0CP02777D</a></li>
<li>Bischof, Steven M. and Cheng, Mu-Jeng, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110504-073755259">Functionalization of Rhenium Aryl Bonds by O-Atom Transfer</a>; Organometallics; Vol. 30; No. 8; 2079-2082; <a href="https://doi.org/10.1021/om2002365">10.1021/om2002365</a></li>
<li>Young, Kenneth J. H. and Lokare, Kapil S., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110601-092305453">Synthesis of osmium and ruthenium complexes bearing dimethyl (S,S)-2,2′-(pyridine-2,6-diyl)-bis-(4,5-dihydrooxazol-4-carboxylate) ligand and application to catalytic H/D exchange</a>; Journal of Molecular Catalysis A: Chemical; Vol. 339; No. 1-2; 17-23; <a href="https://doi.org/10.1016/j.molcata.2011.01.029">10.1016/j.molcata.2011.01.029</a></li>
<li>Cheng, Mu-Jeng and Nielsen, Robert J., el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100524-150452201">Carbon−Oxygen Bond Forming Mechanisms in Rhenium Oxo-Alkyl Complexes</a>; Organometallics; Vol. 29; No. 9; 2026-2033; <a href="https://doi.org/10.1021/om900881x">10.1021/om900881x</a></li>
<li>Goddard, William A., III and Chenoweth, Kimberley, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:GODtic08">Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts</a>; Topics in catalysis; Vol. 50; No. 1-4; 2-18; <a href="https://doi.org/10.1007/s11244-008-9096-x">10.1007/s11244-008-9096-x</a></li>
<li>Chenoweth, Kimberly and van Duin, Adri C. T., el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170719-093305273">Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts</a>; Journal of Physical Chemistry C; Vol. 112; No. 37; 14645-14654; <a href="https://doi.org/10.1021/jp802134x">10.1021/jp802134x</a></li>
<li>Cheng, Mu-Jeng and Chenoweth, Kimberly, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170712-070026084">Single-Site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane Oxidative Dehydrogenation on the Cubic V_4O_(10)Cluster</a>; Journal of Physical Chemistry C; Vol. 111; No. 13; 5115-5127; <a href="https://doi.org/10.1021/jp0663917">10.1021/jp0663917</a></li>
<li>Goddard, William A., III and van Duin, Adri, el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110601-142550273">Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO_x</a>; Topics in Catalysis; Vol. 38; No. 1-3; 93-103; <a href="https://doi.org/10.1007/s11244-006-0074-x">10.1007/s11244-006-0074-x</a></li>
</ul>