<h1>Chan, David</h1> <h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Castellaneta, Andrea and Losito, Ilario, el al. (2024) <a href="https://authors.library.caltech.edu/records/7z188-kda85">Lipidomics reveals the reshaping of the mitochondrial phospholipid profile in cells lacking OPA1 and Mitofusins</a>; Journal of Lipid Research; 100563; <a href="https://doi.org/10.1016/j.jlr.2024.100563">10.1016/j.jlr.2024.100563</a></li> <li>Yamashita, Shun-ichi and Sugiura, Yuki, el al. (2024) <a href="https://authors.library.caltech.edu/records/2fx64-j7b93">Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species</a>; Cell Death & Differentiation; Vol. 31; No. 5; 651-661; PMCID PMC11094013; <a href="https://doi.org/10.1038/s41418-024-01280-y">10.1038/s41418-024-01280-y</a></li> <li>Chakrabarty, Yogaditya and Yang, Zheng, el al. (2024) <a href="https://authors.library.caltech.edu/records/brxbr-2nk64">The HRI branch of the integrated stress response selectively triggers mitophagy</a>; Molecular Cell; Vol. 84; No. 6; 1090-1100.e6; PMCID PMC11062084; <a href="https://doi.org/10.1016/j.molcel.2024.01.016">10.1016/j.molcel.2024.01.016</a></li> <li>Yang, Zheng and Chan, David C. (2023) <a href="https://authors.library.caltech.edu/records/k6fv0-7vk26">Control of mitochondrial dynamics by a fusogenic lipid</a>; Trends in Cell Biology; Vol. 33; No. 12; 1005-1006; PMCID PMC10841390; <a href="https://doi.org/10.1016/j.tcb.2023.10.006">10.1016/j.tcb.2023.10.006</a></li> <li>Rosencrans, William M. and Chan, David C. (2023) <a href="https://authors.library.caltech.edu/records/e4drt-1z113">Fusion activators enhance mitochondrial function</a>; Mitochondrial Communications; Vol. 1; 33-34; PMCID PMC10956541; <a href="https://doi.org/10.1016/j.mitoco.2023.03.001">10.1016/j.mitoco.2023.03.001</a></li> <li>Fry, Michelle Y. and Navarro, Paula P., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-182139000.16">In situ architecture of Opa1-dependent mitochondrial cristae remodeling</a>; <a href="https://doi.org/10.1101/2023.01.16.524176">10.1101/2023.01.16.524176</a></li> <li>Murata, Daisuke and Grunseich, Christopher, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230207-728273600.6">A Heterozygous Mutation in MFF Associated with a Mild Mitochondrial Phenotype</a>; Journal of Neuromuscular Diseases; Vol. 10; No. 1; 107-118; <a href="https://doi.org/10.3233/jnd-221532">10.3233/jnd-221532</a></li> <li>Dai, Wenting and Wang, Zhichao, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220922-931611600.11">Metabolic reprogramming in the OPA1-deficient cells</a>; Cellular and Molecular Life Sciences; Vol. 79; No. 10; Art. No. 517; <a href="https://doi.org/10.1007/s00018-022-04542-5">10.1007/s00018-022-04542-5</a></li> <li>Yang, Huan and Sibilla, Caroline, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220328-640822600">Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria</a>; Nature Communications; Vol. 13; No. 1; Art. No. 1582; <a href="https://doi.org/10.1038/s41467-022-29071-4">10.1038/s41467-022-29071-4</a></li> <li>Wareham, Lauren K. and Liddelow, Shane A., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220323-704323000">Solving neurodegeneration: common mechanisms and strategies for new treatments</a>; Molecular Neurodegeneration; Vol. 17; Art. No. 23; PMCID PMC8935795; <a href="https://doi.org/10.1186/s13024-022-00524-0">10.1186/s13024-022-00524-0</a></li> <li>Sonn, Seong Keun and Seo, Seungwoon, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211129-367530900">ER-associated CTRP1 regulates mitochondrial fission via interaction with DRP1</a>; Experimental and Molecular Medicine; Vol. 53; 1769-1780; PMCID PMC8639813; <a href="https://doi.org/10.1038/s12276-021-00701-z">10.1038/s12276-021-00701-z</a></li> <li>Varuzhanyan, Grigor and Ladinsky, Mark S., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-213708833">Fis1 ablation in the male germline disrupts mitochondrial morphology and mitophagy, and arrests spermatid maturation</a>; Development; Vol. 148; No. 16; Art. No. dev199686; PMCID PMC8380467; <a href="https://doi.org/10.1242/dev.199686">10.1242/dev.199686</a></li> <li>Varuzhanyan, Grigor and Chen, Hsiuchen, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210119-143306934">Mitochondrial fission factor (Mff) is required for organization of the mitochondrial sheath in spermatids</a>; Biochimica et Biophysica Acta - General Subjects; Vol. 1865; No. 5; Art. No. 129845; PMCID PMC7904653; <a href="https://doi.org/10.1016/j.bbagen.2021.129845">10.1016/j.bbagen.2021.129845</a></li> <li>Wang, Ruohan and Mishra, Prashant, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201202-104543824">Identification of new OPA1 cleavage site reveals that short isoforms regulate mitochondrial fusion</a>; Molecular Biology of the Cell; Vol. 32; No. 2; 157-168; PMCID PMC8120690; <a href="https://doi.org/10.1091/mbc.e20-09-0605">10.1091/mbc.e20-09-0605</a></li> <li>Shin, Chun-Shik and Meng, Shuxia, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210111-122716111">LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding</a>; Nature Communications; Vol. 12; Art. No. 265; PMCID PMC7801493; <a href="https://doi.org/10.1038/s41467-020-20597-z">10.1038/s41467-020-20597-z</a></li> <li>Kato, Mitsuo and Abdollahi, Maryam, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210107-094647288">miR-379 deletion ameliorates features of diabetic kidney disease by enhancing adaptive mitophagy via FIS1</a>; Communications Biology; Vol. 4; Art. No. 30; PMCID PMC7782535; <a href="https://doi.org/10.1038/s42003-020-01516-w">10.1038/s42003-020-01516-w</a></li> <li>Adachi, Yoshihiro and Kato, Takashi, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201105-160425351">Drp1 Tubulates the ER in a GTPase-Independent Manner</a>; Molecular Cell; Vol. 80; No. 4; 621-632; PMCID PMC7680448; <a href="https://doi.org/10.1016/j.molcel.2020.10.013">10.1016/j.molcel.2020.10.013</a></li> <li>Varuzhanyan, Grigor and Chan, David C. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200717-104855196">Mitochondrial dynamics during spermatogenesis</a>; Journal of Cell Science; Vol. 133; No. 14; Art. No. jcs235937; PMCID PMC7375475; <a href="https://doi.org/10.1242/jcs.235937">10.1242/jcs.235937</a></li> <li>Chan, David C. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191014-080340305">Mitochondrial Dynamics and Its Involvement in Disease</a>; Annual Review of Pathology: Mechanisms of Disease; Vol. 15; 235-259; <a href="https://doi.org/10.1146/annurev-pathmechdis-012419-032711">10.1146/annurev-pathmechdis-012419-032711</a></li> <li>Mishra, Prashant and Zhang, Ting, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201103-072654229">Mitochondrial Respiratory Measurements in Patient-derived Fibroblasts</a>; Bio-protocol; Vol. 9; No. 23; Art. No. e3446; PMCID PMC7853990; <a href="https://doi.org/10.21769/bioprotoc.3446">10.21769/bioprotoc.3446</a></li> <li>Li, Yu-Jie and Cao, Yu-Lu, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191105-105608947">Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset</a>; Nature Communications; Vol. 10; Art. No. 4914; PMCID PMC6820788; <a href="https://doi.org/10.1038/s41467-019-12912-0">10.1038/s41467-019-12912-0</a></li> <li>Varuzhanyan, Grigor and Rojansky, Rebecca, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20191014-105658223">Mitochondrial fusion is required for spermatogonial differentiation and meiosis</a>; eLife; Vol. 8; Art. No. e51601; PMCID PMC6805159; <a href="https://doi.org/10.7554/elife.51601">10.7554/elife.51601</a></li> <li>Kehr, Andrew D. and Meng, Shuxia, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190219-111416959">Advances in the Structural and Biochemical Determination of Several Dynamin-Like GTPases</a>; Biophysical Journal; Vol. 116; No. 3; 473a; <a href="https://doi.org/10.1016/j.bpj.2018.11.2552">10.1016/j.bpj.2018.11.2552</a></li> <li>Del Dotto, Valentina and Fogazza, Mario, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180806-125015141">Deciphering OPA1 mutations pathogenicity by combined analysis of human, mouse and yeast cell models</a>; Biochimica et Biophysica Acta - Molecular Basis of Disease; Vol. 1864; No. 10; 3496-3514; <a href="https://doi.org/10.1016/j.bbadis.2018.08.004">10.1016/j.bbadis.2018.08.004</a></li> <li>Guo, Yuxuan and Jardin, Blake D., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181001-094858218">Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor</a>; Nature Communications; Vol. 9; Art. No. 3837; PMCID PMC6155060; <a href="https://doi.org/10.1038/s41467-018-06347-2">10.1038/s41467-018-06347-2</a></li> <li>Ryan, Conor S. and Fine, Anthony L., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180611-081026318">De Novo DNM1L Variant in a Teenager With Progressive Paroxysmal Dystonia and Lethal Super-refractory Myoclonic Status Epilepticus</a>; Journal of Child Neurology; Vol. 33; No. 10; 651-658; <a href="https://doi.org/10.1177/0883073818778203">10.1177/0883073818778203</a></li> <li>Cha, Moon Yong and Chen, Hsiuchen, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181009-131053999">Removal of the Mitochondrial Fission Factor Mff Exacerbates Neuronal Loss and Neurological Phenotypes in a Huntington's Disease Mouse Model</a>; PLOS Currents; PMCID PMC6149597; <a href="https://doi.org/10.1371/currents.hd.a4e15b80c4915c828d39754942c6631f">10.1371/currents.hd.a4e15b80c4915c828d39754942c6631f</a></li> <li>Jian, Fenglei and Chen, Dan, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180608-091335668">Sam50 Regulates PINK1-Parkin-Mediated Mitophagy by Controlling PINK1 Stability and Mitochondrial Morphology</a>; Cell Reports; Vol. 23; No. 10; 2989-3005; <a href="https://doi.org/10.1016/j.celrep.2018.05.015">10.1016/j.celrep.2018.05.015</a></li> <li>Nemani, Neeharika and Carvalho, Edmund, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180425-144714424">MIRO-1 Determines Mitochondrial Shape Transition upon GPCR Activation and Ca^(2+) Stress</a>; Cell Reports; Vol. 23; No. 4; 1005-1019; PMCID PMC5973819; <a href="https://doi.org/10.1016/j.celrep.2018.03.098">10.1016/j.celrep.2018.03.098</a></li> <li>Chan, David C. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180411-111634786">Mitochondrial fusion and fission in health and disease</a>; Molecular Genetics and Metabolism; Vol. 123; No. 3; 196; <a href="https://doi.org/10.1016/j.ymgme.2017.12.430">10.1016/j.ymgme.2017.12.430</a></li> <li>Chan, David (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171208-073351141">Molecular Analysis Of Mitochondrial Dynamics</a>; Free Radical Biology and Medicine; Vol. 112; No. S1; 17; <a href="https://doi.org/10.1016/j.freeradbiomed.2017.10.371">10.1016/j.freeradbiomed.2017.10.371</a></li> <li>Li, J. and Lancaster, E., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170928-074802946">A Rat Model of CMT2A Develops a Progressive Neuropathy</a>; Journal of the Peripheral Nervous System; Vol. 22; No. 3; 331; <a href="https://doi.org/10.1111/jns.12225">10.1111/jns.12225</a></li> <li>Chen, Hsiuchen and Chan, David C. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170627-094323553">Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells</a>; Cell Metabolism; Vol. 26; No. 1; 39-48; PMCID PMC5539982; <a href="https://doi.org/10.1016/j.cmet.2017.05.016">10.1016/j.cmet.2017.05.016</a></li> <li>Liu, Raymond and Chan, David C. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170620-091459936">OPA1 and cardiolipin team up for mitochondrial fusion</a>; Nature Cell Biology; Vol. 19; No. 7; 760-762; PMCID PMC5757513; <a href="https://doi.org/10.1038/ncb3565">10.1038/ncb3565</a></li> <li>Del Dotto, Valentina and Mishra, Prashant, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170627-102931021">OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions</a>; Cell Reports; Vol. 19; No. 12; 2557-2571; <a href="https://doi.org/10.1016/j.celrep.2017.05.073">10.1016/j.celrep.2017.05.073</a></li> <li>Shin, Chun-Shik and Mishra, Prashant, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170424-103533161">The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility</a>; Nature Communications; Vol. 8; Art. No. 15074; PMCID PMC5413954; <a href="https://doi.org/10.1038/ncomms15074">10.1038/ncomms15074</a></li> <li>Zhang, Ting and Mishra, Prashant, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170327-104810282">Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants</a>; eLife; Vol. 6; Art. No. e17834; PMCID PMC5360448; <a href="https://doi.org/10.7554/eLife.17834">10.7554/eLife.17834</a></li> <li>Cao, Yu-Lu and Meng, Shuxia, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161216-173743897">MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion</a>; Nature; Vol. 542; No. 7641; 372-376; PMCID PMC5319402; <a href="https://doi.org/10.1038/nature21077">10.1038/nature21077</a></li> <li>Chen, Hsiuchen and Chan, David (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170623-104426059">Control of Mitochondrial Function by Fusion and Fission</a>; Biophysical Journal; Vol. 112; No. 3, Supp. 1; 179a; <a href="https://doi.org/10.1016/j.bpj.2016.11.994">10.1016/j.bpj.2016.11.994</a></li> <li>Huang, R. E. and Chan, D. C. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170331-133654121">Investigating the roles of Mulan and Fis1 in Mitophagy</a>; Molecular Biology of the Cell; Vol. 27; Art. No. P2161</li> <li>Rojansky, Rebecca and Cha, Moon-Yong, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161121-101729796">Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1</a>; eLife; Vol. 5; Art. No. e17896; PMCID PMC5127638; <a href="https://doi.org/10.7554/eLife.17896">10.7554/eLife.17896</a></li> <li>Mishra, Prashant and Varuzhanyan, Grigor, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20161222-092658901">Regulation of mitochondrial compartmentalization in skeletal muscle</a>; Mitochondrion; Vol. 31; 96; <a href="https://doi.org/10.1016/j.mito.2016.08.010">10.1016/j.mito.2016.08.010</a></li> <li>Cheng, Chun-Ting and Kuo, Ching-Ying, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160914-080907190">Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells</a>; Cancer Research; Vol. 76; No. 17; 5006-5018; PMCID PMC5316485; <a href="https://doi.org/10.1158/0008-5472.CAN-15-2921">10.1158/0008-5472.CAN-15-2921</a></li> <li>Fahrner, Jill A. and Liu, Raymond, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160509-092215894">A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy</a>; American Journal of Medical Genetics Part A; Vol. 170; No. 8; 2002-2011; PMCID PMC5100740; <a href="https://doi.org/10.1002/ajmg.a.37721">10.1002/ajmg.a.37721</a></li> <li>Mishra, Prashant and Chan, David C. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160212-094911928">Metabolic regulation of mitochondrial dynamics</a>; Journal of Cell Biology; Vol. 212; No. 4; 379-387; PMCID PMC4754720; <a href="https://doi.org/10.1083/jcb.201511036">10.1083/jcb.201511036</a></li> <li>Toyama, Erin Quan and Herzig, Sebastien, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20160202-084338645">AMP-activated protein kinase mediates mitochondrial fission in response to energy stress</a>; Science; Vol. 351; No. 6270; 275-281; PMCID PMC4852862; <a href="https://doi.org/10.1126/science.aab4138">10.1126/science.aab4138</a></li> <li>Liu, Raymond and Chan, David C. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20151012-135444280">The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1</a>; Molecular Biology of the Cell; Vol. 26; No. 24; 4466-4477; PMCID PMC4666140; <a href="https://doi.org/10.1091/mbc.E15-08-0591">10.1091/mbc.E15-08-0591</a></li> <li>Mishra, Prashant and Varuzhanyan, Grigor, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20151102-084437357">Mitochondrial Dynamics Is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization</a>; Cell Metabolism; Vol. 22; No. 6; 1033-1044; PMCID PMC4670593; <a href="https://doi.org/10.1016/j.cmet.2015.09.027">10.1016/j.cmet.2015.09.027</a></li> <li>Chen, Hsiuchen and Ren, Shuxun, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20151125-103607166">Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy</a>; Journal of Cell Biology; Vol. 211; No. 4; 795-805; PMCID PMC4657172; <a href="https://doi.org/10.1083/jcb.201507035">10.1083/jcb.201507035</a></li> <li>Hashimoto, Masami and Bacman, Sandra R., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150721-100512606">MitoTALENs: A general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases</a>; Molecular Therapy; Vol. 23; No. 10; 1592-1599; PMCID PMC4817924; <a href="https://doi.org/10.1038/mt.2015.126">10.1038/mt.2015.126</a></li> <li>Losón, Oliver C. and Meng, Shuxia, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150120-150157635">Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1</a>; Protein Science; Vol. 24; No. 3; 386-394; PMCID PMC4353364; <a href="https://doi.org/10.1002/pro.2629">10.1002/pro.2629</a></li> <li>Carelli, Valerio and Chan, David C. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141223-110628282">Mitochondrial DNA: Impacting Central and Peripheral Nervous Systems</a>; Neuron; Vol. 84; No. 6; 1126-1142; PMCID PMC4271190; <a href="https://doi.org/10.1016/j.neuron.2014.11.022">10.1016/j.neuron.2014.11.022</a></li> <li>Mishra, Prashant and Chan, David C. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141030-100627897">Mitochondrial dynamics and inheritance during cell division, development and disease</a>; Nature Reviews. Molecular Cell Biology; Vol. 15; No. 10; 634-646; PMCID PMC4250044; <a href="https://doi.org/10.1038/nrm3877">10.1038/nrm3877</a></li> <li>Chan, Nickie C. and den Besten, Willem, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140604-082523933">Degradation of the Deubiquitinating Enzyme USP33 is Mediated by p97 and the Ubiquitin Ligase HERC2</a>; Journal of Biological Chemistry; Vol. 289; No. 28; 19789-19798; PMCID PMC4094088; <a href="https://doi.org/10.1074/jbc.M114.569392">10.1074/jbc.M114.569392</a></li> <li>Mishra, Prashant and Carelli, Valerio, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140410-115936273">Proteolytic Cleavage of Opa1 Stimulates Mitochondrial Inner Membrane Fusion and Couples Fusion to Oxidative Phosphorylation</a>; Cell Metabolism; Vol. 19; No. 4; 630-641; PMCID PMC4018240; <a href="https://doi.org/10.1016/j.cmet.2014.03.011">10.1016/j.cmet.2014.03.011</a></li> <li>Losn, Oliver and Rome, Michael, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150205-131139873">Regulation of mitochondrial fission by MiD51</a>; FASEB Journal; Vol. 28; No. 1; 757.1</li> <li>Losón, Oliver C. and Liu, Raymond, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140214-120458864">The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor</a>; Structure; Vol. 22; No. 3; 367-377; PMCID PMC4066849; <a href="https://doi.org/10.1016/j.str.2014.01.001">10.1016/j.str.2014.01.001</a></li> <li>Samant, Sadhana A. and Zhang, Hannah J., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140317-111654355">SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress</a>; Molecular and Cellular Biology; Vol. 34; No. 5; 807-819; PMCID PMC4023816; <a href="https://doi.org/10.1128/MCB.01483-13">10.1128/MCB.01483-13</a></li> <li>Marinov, Georgi K. and Wang, Yun E., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140228-100446267">Evidence for Site-Specific Occupancy of the Mitochondrial Genome by Nuclear Transcription Factors</a>; PLoS ONE; Vol. 9; No. 1; Art. No. e84713; PMCID PMC3896368; <a href="https://doi.org/10.1371/journal.pone.0084713">10.1371/journal.pone.0084713</a></li> <li>Ngo, Huu B. and Lovely, Geoffrey A., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20140326-113402727">Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation</a>; Nature Communications; Vol. 5; No. 1; Art. No. 3077; PMCID PMC3936014; <a href="https://doi.org/10.1038/ncomms4077">10.1038/ncomms4077</a></li> <li>Pham, Anh H. and Chan, David C. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141201-094500370">Analyzing Mitochondrial Dynamics in Mouse Organotypic Slice Cultures</a>; ISBN 9780128016152; Mitochondrial Function; 111-129; <a href="https://doi.org/10.1016/B978-0-12-801415-8.00007-2">10.1016/B978-0-12-801415-8.00007-2</a></li> <li>Wang, Yun E. and Marinov, Georgi K., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20131010-110126087">Genome-Wide Analysis Reveals Coating of the Mitochondrial Genome by TFAM</a>; PLoS ONE; Vol. 8; No. 8; Art. No. e74513; PMCID PMC3753274; <a href="https://doi.org/10.1371/journal.pone.0074513">10.1371/journal.pone.0074513</a></li> <li>Losón, Oliver Calvin and Chen, Hsiuchen, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130711-101356451">Fis1, Mff, MiD49 and MiD51 facilitate Drp1 recruitment for mitochondrial fission</a>; FASEB Journal; Vol. 27; Art. No. 582.2</li> <li>Losón, Oliver C. and Song, Zhiyin, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130722-112639794">Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission</a>; Molecular Biology of the Cell; Vol. 24; No. 5; 659-667; PMCID PMC3583668; <a href="https://doi.org/10.1091/mbc.E12-10-0721">10.1091/mbc.E12-10-0721</a></li> <li>Kim, Kook Hwan and Jeong, Yeon Taek, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130219-151454535">Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine</a>; Nature Medicine; Vol. 19; No. 1; 83-92; <a href="https://doi.org/10.1038/nm.3014">10.1038/nm.3014</a></li> <li>Pham, Anh H. and Meng, Shuxia, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20121205-091831236">Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit</a>; Human Molecular Genetics; Vol. 21; No. 22; 4817-4826; PMCID PMC3607482; <a href="https://doi.org/10.1093/hmg/dds311">10.1093/hmg/dds311</a></li> <li>Pham, Anh H. and McCaffery, J. Michael, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20121220-081335229">Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics</a>; Genesis; Vol. 50; No. 11; 833-843; PMCID PMC3508687; <a href="https://doi.org/10.1002/dvg.22050">10.1002/dvg.22050</a></li> <li>Chan, David C. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120907-130054764">Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health</a>; Annual Review of Genetics; Vol. 46; 265-287; <a href="https://doi.org/10.1146/annurev-genet-110410-132529">10.1146/annurev-genet-110410-132529</a></li> <li>Gautier, Clemente A. and Glaime, Emilie, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120907-104242655">Regulation of mitochondrial permeability transition pore by PINK1</a>; Molecular Neurodegeneration; Vol. 7; No. 1; Art. No. 22; PMCID PMC3405481; <a href="https://doi.org/10.1186/1750-1326-7-22">10.1186/1750-1326-7-22</a></li> <li>Li, Jia and Liu, Xiaolei, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120523-083401514">Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 109; No. 18; 6975-6890; PMCID PMC3345005; <a href="https://doi.org/10.1073/pnas.1120043109">10.1073/pnas.1120043109</a></li> <li>Chan, David and Ngo, Huu B., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20121220-105846739">Dynamics of mitochondria and mitochondrial DNA</a>; FASEB Journal; Vol. 26; Art. No. 103.2</li> <li>Klionsky, Daniel J. and Chan, David C. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20121113-093943754">Guidelines for the use and interpretation of assays for monitoring autophagy</a>; Autophagy; Vol. 8; No. 4; 445-544; PMCID PMC3404883; <a href="https://doi.org/10.4161/auto.19496">10.4161/auto.19496</a></li> <li>Zhang, Yan and Chan, Nickie C., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120501-070603033">Crystal Structure of Mitochondrial Fission Complex Reveals Scaffolding Function for Mitochondrial Division 1 (Mdv1) Coiled Coil</a>; Journal of Biological Chemistry; Vol. 287; No. 13; 9855-9861; PMCID PMC3323041; <a href="https://doi.org/10.1074/jbc.M111.329359">10.1074/jbc.M111.329359</a></li> <li>Chan, David C. and Schon, Eric A. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120416-130332825">Eliminating Mitochondrial DNA from Sperm</a>; Developmental Cell; Vol. 22; No. 3; 469-470; PMCID PMC3995028; <a href="https://doi.org/10.1016/j.devcel.2012.02.008">10.1016/j.devcel.2012.02.008</a></li> <li>Ngo, Huu B. and Kaiser, Jens T., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20111130-093715777">The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA</a>; Nature Structural & Molecular Biology; Vol. 18; No. 11; 1290-1296; PMCID PMC3210390; <a href="https://doi.org/10.1038/nsmb.2159">10.1038/nsmb.2159</a></li> <li>Chan, Nickie C. and Chan, David C. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110715-103712655">Parkin uses the UPS to ship off dysfunctional mitochondria</a>; Autophagy; Vol. 7; No. 7; 771-772; PMCID PMC3973655; <a href="https://doi.org/10.4161/auto.7.7.15453">10.4161/auto.7.7.15453</a></li> <li>Chan, Nickie C. and Salazar, Anna M., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110504-073756492">Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy</a>; Human Molecular Genetics; Vol. 20; No. 9; 1726-1737; PMCID PMC3071670; <a href="https://doi.org/10.1093/hmg/ddr048">10.1093/hmg/ddr048</a></li> <li>Aravin, Alexei A. and Chan, David C. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110418-113351861">piRNAs Meet Mitochondria</a>; Developmental Cell; Vol. 20; No. 3; 287-288; <a href="https://doi.org/10.1016/j.devcel.2011.03.003">10.1016/j.devcel.2011.03.003</a></li> <li>Chen, Hsiuchen and Chan, David C. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20110318-143103206">Physiological functions of mitochondrial fusion</a>; Annals of the New York Academy of Sciences; Vol. 1201; 21-25; <a href="https://doi.org/10.1111/j.1749-6632.2010.05615.x">10.1111/j.1749-6632.2010.05615.x</a></li> <li>Ban, Tadato and Heymann, Jürgen A. W., el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100601-074205594">OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation</a>; Human Molecular Genetics; Vol. 19; No. 11; 2113-2122; PMCID PMC2865371; <a href="https://doi.org/10.1093/hmg/ddq088">10.1093/hmg/ddq088</a></li> <li>Chen, Hsiuchen and Vermulst, Marc, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20100512-141625107">Mitochondrial Fusion Is Required for mtDNA Stability in Skeletal Muscle and Tolerance of mtDNA Mutations</a>; Cell; Vol. 141; No. 2; 280-289; PMCID PMC2876819; <a href="https://doi.org/10.1016/j.cell.2010.02.026">10.1016/j.cell.2010.02.026</a></li> <li>Chen, Hsiuchen and Chan, David C. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20091130-112530331">Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases</a>; Human Molecular Genetics; Vol. 18; No. 2; R169-R176; <a href="https://doi.org/10.1093/hmg/ddp326">10.1093/hmg/ddp326</a></li> <li>Song, Zhiyin and Ghochani, Mariam, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20090817-144815077">Mitofusins and OPA1 Mediate Sequential Steps in Mitochondrial Membrane Fusion</a>; Molecular Biology of the Cell; Vol. 20; No. 15; 3525-3532; PMCID PMC2719570; <a href="https://doi.org/10.1091/mbc.E09-03-0252">10.1091/mbc.E09-03-0252</a></li> <li>Tondera, Daniel and Grandemange, Stephanie, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20090903-083208055">SLP-2 is required for stress-induced mitochondrial hyperfusion</a>; EMBO Journal; Vol. 28; No. 11; 1589-1600; PMCID PMC2693158; <a href="https://doi.org/10.1038/emboj.2009.89">10.1038/emboj.2009.89</a></li> <li>Detmer, Scott A. and Vande Velde, Christine, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170710-085600164">Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot–Marie–Tooth type 2A</a>; Human Molecular Genetics; Vol. 17; No. 3; 367-375; <a href="https://doi.org/10.1093/hmg/ddm314">10.1093/hmg/ddm314</a></li> <li>Zhang, Yan and Chan, David C. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:ZHApnas07">Structural basis for recruitment of mitochondrial fission complexes by Fis1</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 104; No. 47; 18526-18530; PMCID PMC2141810; <a href="https://doi.org/10.1073/pnas.0706441104">10.1073/pnas.0706441104</a></li> <li>Detmer, Scott A. and Chan, David C. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150317-102457156">Functions and dysfunctions of mitochondrial dynamics</a>; Nature Reviews. Molecular Cell Biology; Vol. 8; No. 11; 870-879; <a href="https://doi.org/10.1038/nrm2275">10.1038/nrm2275</a></li> <li>Song, Zhiyin and Chen, Hsiuchen, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SONjcb07">OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L</a>; Journal of Cell Biology; Vol. 178; No. 5; 749-755; PMCID PMC2064540; <a href="https://doi.org/10.1083/jcb.200704110">10.1083/jcb.200704110</a></li> <li>Chen, Hsiuchen and McCaffery, J. Michael, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-132224024">Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum</a>; Cell; Vol. 130; No. 3; 548-562; <a href="https://doi.org/10.1016/j.cell.2007.06.026">10.1016/j.cell.2007.06.026</a></li> <li>Chan, David C. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170710-082833330">Mitochondrial Dynamics in Disease</a>; New England Journal of Medicine; Vol. 356; No. 17; 1707-1709; <a href="https://doi.org/10.1056/NEJMp078040">10.1056/NEJMp078040</a></li> <li>Detmer, Scott A. and Chan, David C. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:DETjcb07">Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations</a>; Journal of Cell Biology; Vol. 170; No. 4; 405-414; PMCID PMC2063976; <a href="https://doi.org/10.1083/jcb.200611080">10.1083/jcb.200611080</a></li> <li>Chan, David C. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHAarcdb06">Mitochondrial Fusion and Fission in Mammals</a>; Annual Review of Cell and Developmental Biology; Vol. 22; 79-99; <a href="https://doi.org/10.1146/annurev.cellbio.22.010305.104638">10.1146/annurev.cellbio.22.010305.104638</a></li> <li>Choi, Seok-Yong and Huang, Ping, el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150408-135021559">A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis</a>; Nature Cell Biology; Vol. 8; No. 11; 1255-1262; <a href="https://doi.org/10.1038/ncb1487">10.1038/ncb1487</a></li> <li>Chen, Hsiuchen and Chan, David C. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-134400692">Critical dependence of neurons on mitochondrial dynamics</a>; Current Opinion in Cell Biology; Vol. 18; No. 4; 453-459; <a href="https://doi.org/10.1016/j.ceb.2006.06.004">10.1016/j.ceb.2006.06.004</a></li> <li>Chan, David C. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-131920686">Mitochondria: Dynamic Organelles in Disease, Aging, and Development</a>; Cell; Vol. 125; No. 7; 1241-1252; <a href="https://doi.org/10.1016/j.cell.2006.06.010">10.1016/j.cell.2006.06.010</a></li> <li>Griffin, Erik E. and Chan, David C. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:GRIjbc06">Domain interactions within Fzo1 oligomers are essential for mitochondrial fusion</a>; Journal of Biological Chemistry; Vol. 281; No. 24; 16599-16606; <a href="https://doi.org/10.1074/jbc.M601847200">10.1074/jbc.M601847200</a></li> <li>Soriano, Franscesc X. and Liesa, Marc, el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170408-171111529">Evidence for a Mitochondrial Regulatory Pathway Defined by Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α, Estrogen-Related Receptor-α, and Mitofusin 2</a>; Diabetes; Vol. 55; No. 6; 1783-1791; <a href="https://doi.org/10.2337/db05-0509">10.2337/db05-0509</a></li> <li>Griffin, Erik E. and Detmer, Scott A., el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-145340571">Molecular mechanism of mitochondrial membrane fusion</a>; Biochimica et Biophysica Acta; Vol. 1763; No. 5-6; 482-489; <a href="https://doi.org/10.1016/j.bbamcr.2006.02.003">10.1016/j.bbamcr.2006.02.003</a></li> <li>Chan, D. and Frank, S., el al. (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-141353341">Mitochondrial dynamics in cell life and death</a>; Cell Death and Differentiation; Vol. 13; No. 4; 680-684; <a href="https://doi.org/10.1038/sj.cdd.4401857">10.1038/sj.cdd.4401857</a></li> <li>Chen, Hsiuchen and Chan, David C. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHEhmg05">Emerging functions of mammalian mitochondrial fusion and fission</a>; Human Molecular Genetics; Vol. 14; No. 2; R283-R289</li> <li>Griffin, Erik E. and Graumann, Johannes, el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:GRIjcb05">The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria</a>; Journal of Cell Biology; Vol. 170; No. 2; 237-248; PMCID PMC2171414; <a href="https://doi.org/10.1083/jcb.200503148">10.1083/jcb.200503148</a></li> <li>Chen, Hsiuchen and Chomyn, Anne, el al. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:CHEjbc05">Disruption of fusion results in mitochondrial heterogeneity and dysfunction</a>; Journal of Biological Chemistry; Vol. 280; No. 28; 26185-26192; <a href="https://doi.org/10.1074/jbc.M503062200">10.1074/jbc.M503062200</a></li> <li>Suntoke, Tara R. and Chan, David C. (2005) <a href="https://resolver.caltech.edu/CaltechAUTHORS:SUNjbc05">The Fusion Activity of HIV-1 gp41 Depends on Interhelical Interactions</a>; Journal of Biological Chemistry; Vol. 280; No. 20; 19852-19857; <a href="https://doi.org/10.1074/jbc.M502196200">10.1074/jbc.M502196200</a></li> <li>Koshiba, Takumi and Detmer, Scott A., el al. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20141120-103756939">Structural Basis of Mitochondrial Tethering by Mitofusin Complexes</a>; Science; Vol. 305; No. 5685; 858-862; <a href="https://doi.org/10.1126/science.1099793">10.1126/science.1099793</a></li> <li>Chen, Hsiuchen and Chan, David C. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170710-085130148">Mitochondrial Dynamics in Mammals</a>; Current Topics in Developmental Biology; Vol. 59; 119-144; <a href="https://doi.org/10.1016/S0070-2153(04)59005-1">10.1016/S0070-2153(04)59005-1</a></li> <li>Karbowski, Mariusz and Arnoult, Damien, el al. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KARjcb04">Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis</a>; Journal of Cell Biology; Vol. 164; No. 4; 493-499; PMCID PMC2172000; <a href="https://doi.org/10.1083/jcb.200309082">10.1083/jcb.200309082</a></li> <li>Koshiba, Takumi and Chan, David C. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:KOSjbc03">The Prefusogenic Intermediate of HIV-1 gp41 Contains Exposed C-peptide Regions</a>; Journal of Biological Chemistry; Vol. 278; No. 9; 7573-7579; <a href="https://doi.org/10.1074/jbc.M211154200">10.1074/jbc.M211154200</a></li> <li>Chen, Hsiuchen and Detmer, Scott A., el al. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20111025-153633703">Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development</a>; Journal of Cell Biology; Vol. 160; No. 2; 189-200; PMCID PMC2172648; <a href="https://doi.org/10.1083/jcb.200211046">10.1083/jcb.200211046</a></li> <li>Chan, David C. and Chutkowski, C. T., el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-135940010">Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 95; No. 26; 15613-15617; PMCID PMC28092; <a href="https://doi.org/10.1073/pnas.95.26.15613">10.1073/pnas.95.26.15613</a></li> <li>Malashkevich, Vladimir N. and Chan, David C., el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-145412080">Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: Conserved helical interactions underlie the broad inhibitory activity of gp41 peptides</a>; Proceedings of the National Academy of Sciences of the United States of America; Vol. 95; No. 16; 9134-9139; PMCID PMC21304</li> <li>Chan, David C. and Kim, Peter S. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-123731974">HIV Entry and Its Inhibition</a>; Cell; Vol. 93; No. 5; 681-684; <a href="https://doi.org/10.1016/S0092-8674(00)81430-0">10.1016/S0092-8674(00)81430-0</a></li> <li>Chan, David C. and Fass, Deborah, el al. (1997) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170707-131349087">Core Structure of gp41 from the HIV Envelope Glycoprotein</a>; Cell; Vol. 89; No. 2; 263-273; <a href="https://doi.org/10.1016/S0092-8674(00)80205-6">10.1016/S0092-8674(00)80205-6</a></li> <li>Chan, David C. and Wynshaw-Boris, Anthony, el al. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120208-082143624">Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud</a>; Development; Vol. 121; No. 10; 3151-3162</li> <li>Chan, David C. and Laufer, Ed, el al. (1995) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120208-075531654">Polydactylous limbs in Strong's Luxoid mice result from ectopic polarizing activity</a>; Development; Vol. 121; No. 7; 1971-1978</li> </ul>