<h1>Arnold, Frances</h1> <h2>Book Chapter from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Athavale, Soumitra V. and Chen, Kai, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220126-25738800">Engineering Enzymes for New‐to‐Nature Carbene Chemistry</a>; ISBN 9783527347995; Transition Metal-Catalyzed Carbene Transformations; 95-138; <a href="https://doi.org/10.1002/9783527829170.ch4">10.1002/9783527829170.ch4</a></li> <li>Zhang, Ruijie K. and Romney, David K., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180502-090421380">Directed Evolution of Artificial Metalloenzymes: Bridging Synthetic Chemistry and Biology</a>; ISBN 9783527341788; Artificial Metalloenzymes and MetalloDNAzymes in Catalysis; 137-170; <a href="https://doi.org/10.1002/9783527804085.ch5">10.1002/9783527804085.ch5</a></li> <li>Cahn, Jackson K. B. and Brinkmann-Chen, Sabine, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20171127-143418550">Enzyme Nicotinamide Cofactor Specificity Reversal Guided by Automated Structural Analysis and Library Design</a>; ISBN 978-1-4939-7294-4; Synthetic Metabolic Pathways; 15-26; <a href="https://doi.org/10.1007/978-1-4939-7295-1_2">10.1007/978-1-4939-7295-1_2</a></li> <li>Murciano-Calles, Javier and Buller, Andrew R., el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180702-074326733">Directed Evolution of an Allosteric Tryptophan Synthase to Create a Platform for Synthesis of Noncanonical Amino Acids</a>; ISBN 978-3-319-50411-7; Directed Enzyme Evolution: Advances and Applications; 1-16; <a href="https://doi.org/10.1007/978-3-319-50413-1_1">10.1007/978-3-319-50413-1_1</a></li> <li>Smith, Matthew A. and Arnold, Frances H. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20131015-081653940">Designing libraries of chimeric proteins using SCHEMA recombination and RASPP</a>; ISBN 978-1-4939-1052-6; Directed Evolution Library Creation: Methods and Protocols; 335-343; <a href="https://doi.org/10.1007/978-1-4939-1053-3_22">10.1007/978-1-4939-1053-3_22</a></li> <li>Smith, Matthew A. and Arnold, Frances H. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180822-140726128">Noncontiguous SCHEMA Protein Recombination</a>; ISBN 9781493910526; Directed Evolution Library Creation: Methods and Protocols; 345-352; <a href="https://doi.org/10.1007/978-1-4939-1053-3_23">10.1007/978-1-4939-1053-3_23</a></li> <li>Coelho, P. S. and Arnold, F. H., el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150202-095412727">Synthetic Biology Approaches for Organic Synthesis</a>; ISBN 978-0-08-097743-0; Comprehensive Organic Synthesis II; 390-420; <a href="https://doi.org/10.1016/B978-0-08-097742-3.00931-9">10.1016/B978-0-08-097742-3.00931-9</a></li> <li>Arnold, Frances H. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20150519-132607405">Expanding the enzyme universe through a marriage of chemistry and evolution</a>; ISBN 978-981-4603-82-9; New chemistry and new opportunities from the expanding protein universe; 84-89; <a href="https://doi.org/10.1142/9789814603836_0014">10.1142/9789814603836_0014</a></li> <li>Romero, Philip A. and Shapiro, Mikhail G., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130410-132453635">Directed Evolution of Protein-Based Neurotransmitter Sensors for MRI</a>; ISBN 978-1-62703-344-2; Chemical Neurobiology : Methods and Protocols; 193-205; PMCID PMC3818115; <a href="https://doi.org/10.1007/978-1-62703-345-9_14">10.1007/978-1-62703-345-9_14</a></li> <li>Heinzelman, Pete and Romero, Philip A., el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20130620-125417347">Efficient Sampling of SCHEMA Chimera Families to Identify Useful Sequence Elements</a>; ISBN 9780123942920; Methods in Protein Design; 351-368; <a href="https://doi.org/10.1016/B978-0-12-394292-0.00016-3">10.1016/B978-0-12-394292-0.00016-3</a></li> <li>Bastian, Sabine and Arnold, Frances H. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20111216-135337154">Reversal of NAD(P)H Cofactor Dependence by Protein Engineering</a>; ISBN 9781617794834; Microbial Metabolic Engineering; 17-31; <a href="https://doi.org/10.1007/978-1-61779-483-4_2">10.1007/978-1-61779-483-4_2</a></li> <li>Arnold, F. H. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120904-095323598">How Proteins Adapt: Lessons from Directed Evolution</a>; ISBN 978-087969870-6; Evolution: the Molecular Landscape; 41-46</li> <li>Arnold, Frances H. and Moore, Jeffrey C. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180823-144310969">Optimizing industrial enzymes by directed evolution</a>; ISBN 9783540618690; New Enzymes for Organic Synthesis: Screening, Supply and Engineering; 1-14; <a href="https://doi.org/10.1007/bfb0103300">10.1007/bfb0103300</a></li> <li>Silberg, Jonathan J. and Endelman, Jeffrey B., el al. (2004) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180821-161122360">SCHEMA-Guided Protein Recombination</a>; ISBN 9780121827939; Protein Engineering; 35-42; <a href="https://doi.org/10.1016/S0076-6879(04)88004-2">10.1016/S0076-6879(04)88004-2</a></li> <li>Aguinaldo, Anna Marie and Arnold, Frances H. (2003) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180822-140726328">Staggered Extension Process (StEP) In Vitro Recombination</a>; ISBN 159259395X; Directed Evolution Library Creation: Methods and Protocols; 105-110; <a href="https://doi.org/10.1385/1-59259-395-x:105">10.1385/1-59259-395-x:105</a></li> <li>Cirino, Patrick C. and Arnold, Frances H. (2002) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180822-140907352">Exploring the Diversity of Heme Enzymes through Directed Evolution</a>; ISBN 9783527304233; Directed Molecular Evolution of Proteins: or How to Improve Enzymes for Biocatalysis; 215-243; <a href="https://doi.org/10.1002/3527600647.ch10">10.1002/3527600647.ch10</a></li> <li>Arnold, Frances H. (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180822-140726417">Preface</a>; ISBN 9780120342556; Evolutionary Protein Design; ix-xi; <a href="https://doi.org/10.1016/s0065-3233(01)55000-7">10.1016/s0065-3233(01)55000-7</a></li> <li>Wintrode, Patrick L. and Arnold, Frances H. (2001) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180822-140726495">Temperature adaptation of enzymes: Lessons from laboratory evolution</a>; ISBN 9780120342556; Evolutionary Protein Design; 161-225; <a href="https://doi.org/10.1016/s0065-3233(01)55004-4">10.1016/s0065-3233(01)55004-4</a></li> <li>Gershenson, Anne and Arnold, Frances H. (2000) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200221-130840993">Enzyme Stabilization by Directed Evolution</a>; ISBN 978-1-4613-6884-7; Genetic Engineering: Principles and Methods; 55-76; <a href="https://doi.org/10.1007/978-1-4615-4199-8_5">10.1007/978-1-4615-4199-8_5</a></li> <li>Arnold, Frances H. and Wintrode, Patrick L. (1999) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180822-140907434">Enzymes, Directed Evolution</a>; ISBN 0471250589; Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation; Art. No. 80; <a href="https://doi.org/10.1002/0471250589.ebt080">10.1002/0471250589.ebt080</a></li> <li>Arnold, Frances H. and Striegler, Susanne, el al. (1998) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180406-091535284">Chiral Ligand Exchange Adsorbents for Amines and Underivatized Amino Acids: 'Bait-and-Switch' Molecular Imprinting</a>; ISBN 9780841235748; Molecular and Ionic Recognition with Imprinted Polymers; 109-118; <a href="https://doi.org/10.1021/bk-1998-0703.ch007">10.1021/bk-1998-0703.ch007</a></li> <li>Chung, Bong H. and Bailey, Darwin, el al. (1994) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180823-084045820">Metal affinity partitioning</a>; ISBN 9780121821296; Aqueous Two-Phase Systems; 167-179; <a href="https://doi.org/10.1016/0076-6879(94)28017-7">10.1016/0076-6879(94)28017-7</a></li> <li>Umaña, Pablo and Kellis, James T., el al. (1993) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180405-145415327">Recombinant Protein Stabilization through Engineered Metal-Chelating Sites</a>; ISBN 9780841225183; Biocatalyst Design for Stability and Specificity; 102-108; <a href="https://doi.org/10.1021/bk-1993-0516.ch007">10.1021/bk-1993-0516.ch007</a></li> <li>Arnold, Frances H. and Chen, Keqin, el al. (1993) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180405-140056909">Engineering Nonaqueous Solvent-Compatible Enzymes</a>; ISBN 9780841225183; Biocatalyst Design for Stability and Specificity; 109-113; <a href="https://doi.org/10.1021/bk-1993-0516.ch008">10.1021/bk-1993-0516.ch008</a></li> <li>Chung, Bong Hyun and Arnold, Frances H. (1992) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201023-182805331">Metal Affinity Partitioning of Phosphoproteins in Aqueous Two-Phase Systems</a>; ISBN 9784431681823; Biochemical Engineering for 2001; 557-559; <a href="https://doi.org/10.1007/978-4-431-68180-9_148">10.1007/978-4-431-68180-9_148</a></li> <li>Suh, S.-S. and Van Dam, M. E., el al. (1990) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180405-104511502">Novel Metal-Affinity Protein Separations</a>; <a href="https://doi.org/10.1021/bk-1990-0427.ch010">10.1021/bk-1990-0427.ch010</a></li> </ul>