<h1>Anandkumar, Animashree</h1>
<h2>Combined from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2>
<ul>
<li>Lale, Sahin and Renn, Peter I., el al. (2024) <a href="https://authors.library.caltech.edu/records/f8vmz-3pw50">FALCON: Fourier Adaptive Learning and Control for Disturbance Rejection Under Extreme Turbulence</a>; npj Robotics; Vol. 2; No. 1; 6; <a href="https://doi.org/10.1038/s44182-024-00013-0">10.1038/s44182-024-00013-0</a></li>
<li>McClain Gomez, Abigail and Patti, Taylor L., el al. (2024) <a href="https://authors.library.caltech.edu/records/emsfz-n3k73">Near-term distributed quantum computation using mean-field corrections and auxiliary qubits</a>; Quantum Science and Technology; Vol. 9; No. 3; 035022; <a href="https://doi.org/10.1088/2058-9565/ad3f45">10.1088/2058-9565/ad3f45</a></li>
<li>Gopakumar, Vignesh and Pamela, Stanislas, el al. (2024) <a href="https://authors.library.caltech.edu/records/sr4k2-nhn30">Plasma surrogate modelling using Fourier neural operators</a>; Nuclear Fusion; Vol. 64; No. 5; 056025; <a href="https://doi.org/10.1088/1741-4326/ad313a">10.1088/1741-4326/ad313a</a></li>
<li>Azizzadenesheli, Kamyar and Kovachki, Nikola, el al. (2024) <a href="https://authors.library.caltech.edu/records/2ttpy-ejy25">Neural operators for accelerating scientific simulations and design</a>; Nature Reviews Physics; <a href="https://doi.org/10.1038/s42254-024-00712-5">10.1038/s42254-024-00712-5</a></li>
<li>Li, Zongyi and Zheng, Hongkai, el al. (2024) <a href="https://authors.library.caltech.edu/records/06m4r-8jf10">Physics-Informed Neural Operator for Learning Partial Differential Equations</a>; ACM / IMS Journal of Data Science; <a href="https://doi.org/10.1145/3648506">10.1145/3648506</a></li>
<li>Qiao, Zhuoran and Nie, Weili, el al. (2024) <a href="https://authors.library.caltech.edu/records/rhxkg-vj009">State-specific protein–ligand complex structure prediction with a multiscale deep generative model</a>; Nature Machine Intelligence; <a href="https://doi.org/10.1038/s42256-024-00792-z">10.1038/s42256-024-00792-z</a></li>
<li>Zhou, Tingtao and Wan, Xuan, el al. (2024) <a href="https://authors.library.caltech.edu/records/ch9jq-hc145">AI-aided geometric design of anti-infection catheters</a>; Science Advances; Vol. 10; No. 1; eadj1741; PMCID PMC10776022; <a href="https://doi.org/10.1126/sciadv.adj1741">10.1126/sciadv.adj1741</a></li>
<li>Luo, Zelun and Zou, Yuliang, el al. (2024) <a href="https://authors.library.caltech.edu/records/x63gb-tff35">Differentially Private Video Activity Recognition</a>; ISBN 979-8-3503-1892-0; 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 6643-6653; <a href="https://doi.org/10.1109/wacv57701.2024.00652">10.1109/wacv57701.2024.00652</a></li>
<li>Zheng, Zhiling and Alawadhi, Ali H., el al. (2023) <a href="https://authors.library.caltech.edu/records/ewmpw-3r017">Shaping the Water-Harvesting Behavior of Metal–Organic Frameworks Aided by Fine-Tuned GPT Models</a>; Journal of the American Chemical Society; Vol. 145; No. 51; 28284-28295; <a href="https://doi.org/10.1021/jacs.3c12086">10.1021/jacs.3c12086</a></li>
<li>Feng, Jie and Shi, Yuanyuan, el al. (2023) <a href="https://authors.library.caltech.edu/records/v26v8-j6q25">Stability Constrained Reinforcement Learning for Decentralized Real-Time Voltage Control</a>; IEEE Transactions on Control of Network Systems; 1-12; <a href="https://doi.org/10.1109/tcns.2023.3338240">10.1109/tcns.2023.3338240</a></li>
<li>Lale, Sahin and Shi, Yuanyuan, el al. (2023) <a href="https://authors.library.caltech.edu/records/vdtwg-mf097">KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed Stability in Nonlinear Discrete-Time Systems</a>; ISBN 979-8-3503-0124-3; 2023 62nd IEEE Conference on Decision and Control (CDC); 1334-1341; <a href="https://doi.org/10.1109/cdc49753.2023.10384011">10.1109/cdc49753.2023.10384011</a></li>
<li>Liu, Shengchao and Nie, Weili, el al. (2023) <a href="https://authors.library.caltech.edu/records/wygt1-n8w76">Multi-modal molecule structure–text model for text-based retrieval and editing</a>; Nature Machine Intelligence; Vol. 5; No. 12; 1447-1457; <a href="https://doi.org/10.1038/s42256-023-00759-6">10.1038/s42256-023-00759-6</a></li>
<li>Chen, Yilun and Yu, Zhiding, el al. (2023) <a href="https://authors.library.caltech.edu/records/5vdb8-3fq78">FocalFormer3D : Focusing on Hard Instance for 3D Object Detection</a>; ISBN 979-8-3503-0718-4; 2023 IEEE/CVF International Conference on Computer Vision (ICCV); 8360-8371; <a href="https://doi.org/10.1109/iccv51070.2023.00771">10.1109/iccv51070.2023.00771</a></li>
<li>Choe, Jaesung and Choy, Christopher, el al. (2023) <a href="https://authors.library.caltech.edu/records/36q82-yer25">Spacetime Surface Regularization for Neural Dynamic Scene Reconstruction</a>; ISBN 979-8-3503-0718-4; 2023 IEEE/CVF International Conference on Computer Vision (ICCV); 17825-17835; <a href="https://doi.org/10.1109/iccv51070.2023.01638">10.1109/iccv51070.2023.01638</a></li>
<li>Zhao, Bingyin and Yu, Zhiding, el al. (2023) <a href="https://authors.library.caltech.edu/records/fgq7y-t4m59">Fully Attentional Networks with Self-emerging Token Labeling</a>; ISBN 979-8-3503-0718-4; 2023 IEEE/CVF International Conference on Computer Vision (ICCV); 5562-5572; <a href="https://doi.org/10.1109/iccv51070.2023.00514">10.1109/iccv51070.2023.00514</a></li>
<li>Li, Yanwei and Yu, Zhiding, el al. (2023) <a href="https://authors.library.caltech.edu/records/wm174-e8758">End-to-end 3D Tracking with Decoupled Queries</a>; ISBN 979-8-3503-0718-4; 2023 IEEE/CVF International Conference on Computer Vision (ICCV); 18256-18265; <a href="https://doi.org/10.1109/iccv51070.2023.01678">10.1109/iccv51070.2023.01678</a></li>
<li>Haghi, Benyamin and Ma, Lin, el al. (2023) <a href="https://authors.library.caltech.edu/records/1fpbq-zba19">EKGNet: A 10.96μW Fully Analog Neural Network for Intra-Patient Arrhythmia Classification</a>; ISBN 979-8-3503-0026-0; 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS); 1-5; <a href="https://doi.org/10.1109/biocas58349.2023.10389164">10.1109/biocas58349.2023.10389164</a></li>
<li>Li, Zhiqi and Yu, Zhiding, el al. (2023) <a href="https://authors.library.caltech.edu/records/1717p-dtz79">FB-BEV: BEV Representation from Forward-Backward View Transformations</a>; ISBN 979-8-3503-0718-4; 2023 IEEE/CVF International Conference on Computer Vision (ICCV); 6896-6905; <a href="https://doi.org/10.1109/iccv51070.2023.00637">10.1109/iccv51070.2023.00637</a></li>
<li>Kurth, Thorsten and Subramanian, Shashank, el al. (2023) <a href="https://authors.library.caltech.edu/records/k959a-53q45">FourCastNet: Accelerating Global High-Resolution Weather Forecasting Using Adaptive Fourier Neural Operators</a>; ISBN 9798400701900; PASC '23: Proceedings of the Platform for Advanced Scientific Computing Conference; 13; <a href="https://doi.org/10.1145/3592979.3593412">10.1145/3592979.3593412</a></li>
<li>Kiyasseh, Dani and Ma, Runzhuo, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230420-711199500.6">A vision transformer for decoding surgeon activity from surgical videos</a>; Nature Biomedical Engineering; Vol. 7; No. 6; 780-796; PMCID PMC10307635; <a href="https://doi.org/10.1038/s41551-023-01010-8">10.1038/s41551-023-01010-8</a></li>
<li>Kiyasseh, Dani and Laca, Jasper, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230420-614686900.13">Human visual explanations mitigate bias in AI-based assessment of surgeon skills</a>; npj Digital Medicine; Vol. 6; Art. No. 54; PMCID PMC10063676; <a href="https://doi.org/10.1038/s41746-023-00766-2">10.1038/s41746-023-00766-2</a></li>
<li>Wen, Gege and Li, Zongyi, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230404-448520900.5">Real-time high-resolution CO₂ geological storage prediction using nested Fourier neural operators</a>; Energy and Environmental Science; Vol. 16; No. 4; 1732-1741; <a href="https://doi.org/10.1039/d2ee04204e">10.1039/d2ee04204e</a></li>
<li>Inouye, Daniel A. and Ma, Runzhuo, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220930-482429300.5">Assessing the efficacy of dissection gestures in robotic surgery</a>; Journal of Robotic Surgery; Vol. 17; No. 2; 597-603; <a href="https://doi.org/10.1007/s11701-022-01458-x">10.1007/s11701-022-01458-x</a></li>
<li>Kiyasseh, Dani and Laca, Jasper, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230502-987371300.6">A multi-institutional study using artificial intelligence to provide reliable and fair feedback to surgeons</a>; Communications Medicine; Vol. 3; Art. No. 42; PMCID PMC10063640; <a href="https://doi.org/10.1038/s43856-023-00263-3">10.1038/s43856-023-00263-3</a></li>
<li>Liu, Shikun and Fan, Linxi, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153658096">Prismer: A Vision-Language Model with An Ensemble of Experts</a></li>
<li>Anandkumar, Anima (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230327-853994000.2">Neural Operators for Solving PDEs and Inverse Design</a>; ISBN 9781450399784; ISPD '23: Proceedings of the 2023 International Symposium on Physical Design; 195; <a href="https://doi.org/10.1145/3569052.3578911">10.1145/3569052.3578911</a></li>
<li>Hung, Andrew J. and Bao, Richard, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221110-430801400.16">Capturing fine-grained details for video-based automation of suturing skills assessment</a>; International Journal of Computer Assisted Radiology and Surgery; Vol. 18; No. 3; 545-552; PMCID PMC9975072; <a href="https://doi.org/10.1007/s11548-022-02778-x">10.1007/s11548-022-02778-x</a></li>
<li>Wang, Chen and Fan, Linxi, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153701883">MimicPlay: Long-Horizon Imitation Learning by Watching Human Play</a></li>
<li>Li, Yiming and Yu, Zhiding, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-183809946">VoxFormer: Sparse Voxel Transformer for Camera-based 3D Semantic Scene Completion</a></li>
<li>Kocielnik, Rafal and Prabhumoye, Shrimai, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153717662">AutoBiasTest: Controllable Sentence Generation for Automated and Open-Ended Social Bias Testing in Language Models</a></li>
<li>Lim, Jae Hyun and Kovachki, Nikola B., el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153712038">Score-based Diffusion Models in Function Space</a></li>
<li>Xie, Chulin and Huang, De-An, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153727855">PerAda: Parameter-Efficient and Generalizable Federated Learning Personalization with Guarantees</a></li>
<li>Liu, Guan-Horng and Vahdat, Arash, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153732528">I²SB: Image-to-Image Schrödinger Bridge</a></li>
<li>Liu, Shengchao and Zhu, Yutao, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153746362">A Text-guided Protein Design Framework</a></li>
<li>Yang, Zhuolin and Ping, Wei, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153738224">Re-ViLM: Retrieval-Augmented Visual Language Model for Zero and Few-Shot Image Captioning</a></li>
<li>Renn, Peter I and Wang, Cong, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153752294">Forecasting subcritical cylinder wakes with Fourier Neural Operators</a></li>
<li>Lan, Shiyi and Yang, Xitong, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153757695">Vision Transformers Are Good Mask Auto-Labelers</a></li>
<li>Dommer, Abigail and Casalino, Lorenzo, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221017-15547800.39">#COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol</a>; International Journal of High Performance Computing Applications; Vol. 37; No. 1; 28-44; PMCID PMC9527558; <a href="https://doi.org/10.1177/10943420221128233">10.1177/10943420221128233</a></li>
<li>Ma, Runzhuo and Ramaswamy, Ashwin, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230209-988069100.14">Surgical gestures as a method to quantify surgical performance and predict patient outcomes</a>; npj Digital Medicine; Vol. 5; Art. No. 187; PMCID PMC9780308; <a href="https://doi.org/10.1038/s41746-022-00738-y">10.1038/s41746-022-00738-y</a></li>
<li>Sharir, Or and Chan, Garnet Kin-Lic, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153803430">Towards Neural Variational Monte Carlo That Scales Linearly with System Size</a></li>
<li>Liu, Shengchao and Nie, Weili, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230316-153807969">Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing</a></li>
<li>Zhao, Jiawei and Dai, Steve, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221202-906480600.2">LNS-Madam: Low-Precision Training in Logarithmic Number System using Multiplicative Weight Update</a>; IEEE Transactions on Computers; Vol. 71; No. 12; 3179-3190; <a href="https://doi.org/10.1109/tc.2022.3202747">10.1109/tc.2022.3202747</a></li>
<li>Shi, Yuanyuan and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230315-336429000.9">Machine Learning Accelerated PDE Backstepping Observers</a>; ISBN 978-1-6654-6761-2; 2022 IEEE 61st Conference on Decision and Control (CDC); 5423-5428; <a href="https://doi.org/10.1109/cdc51059.2022.9992759">10.1109/cdc51059.2022.9992759</a></li>
<li>Laca, Jasper A. and Kocielnik, Rafal, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221122-564647900.20">Using Real-time Feedback To Improve Surgical Performance on a Robotic Tissue Dissection Task</a>; European Urology Open Science; Vol. 46; 15-21; PMCID PMC9732447; <a href="https://doi.org/10.1016/j.euros.2022.09.015">10.1016/j.euros.2022.09.015</a></li>
<li>Gu, Jiaqi and Keller, Ben, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004618965">HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression</a>; <a href="https://doi.org/10.48550/arXiv.2211.16749">10.48550/arXiv.2211.16749</a></li>
<li>Maust, Haydn and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004750416">Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators</a>; <a href="https://doi.org/10.48550/arXiv.2211.15960">10.48550/arXiv.2211.15960</a></li>
<li>Shi, Yuanyuan and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004741856">Machine Learning Accelerated PDE Backstepping Observers</a>; <a href="https://doi.org/10.48550/arXiv.2211.15044">10.48550/arXiv.2211.15044</a></li>
<li>Zhao, Jiawei and George, Robert Joseph, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004746129">Incremental Fourier Neural Operator</a>; <a href="https://doi.org/10.48550/arXiv.2211.15188">10.48550/arXiv.2211.15188</a></li>
<li>Zheng, Hongkai and Nie, Weili, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004737590">Fast Sampling of Diffusion Models via Operator Learning</a>; <a href="https://doi.org/10.48550/arXiv.2211.13449">10.48550/arXiv.2211.13449</a></li>
<li>Kocielnik, Rafal and Kangaslahti, Sara, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004733367">Can You Label Less by Using Out-of-Domain Data? Active &amp; Transfer Learning with Few-shot Instructions</a>; <a href="https://doi.org/10.48550/arXiv.2211.11798">10.48550/arXiv.2211.11798</a></li>
<li>Xiao, Chaowei and Chen, Zhongzhu, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004727985">DensePure: Understanding Diffusion Models towards Adversarial Robustness</a>; <a href="https://doi.org/10.48550/arXiv.2211.00322">10.48550/arXiv.2211.00322</a></li>
<li>Wen, Gege and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004723629">Accelerating Carbon Capture and Storage Modeling using Fourier Neural Operators</a>; <a href="https://doi.org/10.48550/arXiv.2210.17051">10.48550/arXiv.2210.17051</a></li>
<li>Liu, Mingjie and Yang, Haoyu, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004719416">An Adversarial Active Sampling-based Data Augmentation Framework for Manufacturable Chip Design</a>; <a href="https://doi.org/10.48550/arXiv.2210.15765">10.48550/arXiv.2210.15765</a></li>
<li>Xiao, Junfei and Xu, Zhichao, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004714993">1st Place Solution of The Robust Vision Challenge 2022 Semantic Segmentation Track</a>; <a href="https://doi.org/10.48550/arXiv.2210.12852">10.48550/arXiv.2210.12852</a></li>
<li>Su, Dan and Patwary, Mostofa, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004708253">Context Generation Improves Open Domain Question Answering</a>; <a href="https://doi.org/10.48550/arXiv.2210.06349">10.48550/arXiv.2210.06349</a></li>
<li>Trifan, Anda and Gorgun, Defne, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221011-459145000.39">Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</a>; International Journal of High Performance Computing Applications; <a href="https://doi.org/10.1177/10943420221113513">10.1177/10943420221113513</a></li>
<li>Zvyagin, Maxim and Brace, Alexander, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230322-101633000.20">GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics</a>; PMCID PMC9709791; <a href="https://doi.org/10.1101/2022.10.10.511571">10.1101/2022.10.10.511571</a></li>
<li>Jiang, Yunfan and Gupta, Agrim, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004703977">VIMA: General Robot Manipulation with Multimodal Prompts</a>; <a href="https://doi.org/10.48550/arXiv.2210.03094">10.48550/arXiv.2210.03094</a></li>
<li>Hoeller, David and Rudin, Nikita, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224603901">Neural Scene Representation for Locomotion on Structured Terrain</a>; IEEE Robotics and Automation Letters; Vol. 7; No. 4; 8667-8674; <a href="https://doi.org/10.1109/LRA.2022.3184779">10.1109/LRA.2022.3184779</a></li>
<li>Qiao, Zhuoran and Nie, Weili, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004659742">Dynamic-Backbone Protein-Ligand Structure Prediction with Multiscale Generative Diffusion Models</a>; <a href="https://doi.org/10.48550/arXiv.2209.15171">10.48550/arXiv.2209.15171</a></li>
<li>Cao, Yulong and Xiao, Chaowei, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004655506">AdvDO: Realistic Adversarial Attacks for Trajectory Prediction</a>; <a href="https://doi.org/10.48550/arXiv.2209.08744">10.48550/arXiv.2209.08744</a></li>
<li>Shu, Manli and Nie, Weili, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004651204">Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models</a>; <a href="https://doi.org/10.48550/arXiv.2209.07511">10.48550/arXiv.2209.07511</a></li>
<li>Pangal, Dhiraj J. and Kugener, Guillaume, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220112-7446100">Use of surgical video–based automated performance metrics to predict blood loss and success of simulated vascular injury control in neurosurgery: a pilot study</a>; Journal of Neurosurgery; Vol. 137; No. 3; 840-849; <a href="https://doi.org/10.3171/2021.10.jns211064">10.3171/2021.10.jns211064</a></li>
<li>Markarian, Nicholas and Kugener, Guillaume, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220908-194215690">Validation of Machine Learning-Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video</a>; Operative Neurosurgery; Vol. 23; No. 3; 235-240; <a href="https://doi.org/10.1227/ons.0000000000000274">10.1227/ons.0000000000000274</a></li>
<li>Jeong, Yoonwoo and Shin, Seungjoo, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004646749">PeRFception: Perception using Radiance Fields</a>; <a href="https://doi.org/10.48550/arXiv.2208.11537">10.48550/arXiv.2208.11537</a></li>
<li>Wang, Zichao and Nie, Weili, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004642358">Retrieval-based Controllable Molecule Generation</a>; <a href="https://doi.org/10.48550/arXiv.2208.11126">10.48550/arXiv.2208.11126</a></li>
<li>Kurth, Thorsten and Subramanian, Shashank, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004638167">FourCastNet: Accelerating Global High-Resolution Weather Forecasting using Adaptive Fourier Neural Operators</a>; <a href="https://doi.org/10.48550/arXiv.2208.05419">10.48550/arXiv.2208.05419</a></li>
<li>Huang, De-An and Yu, Zhiding, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004633960">MinVIS: A Minimal Video Instance Segmentation Framework without Video-based Training</a>; <a href="https://doi.org/10.48550/arXiv.2208.02245">10.48550/arXiv.2208.02245</a></li>
<li>Patti, Taylor L. and Kossaifi, Jean, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220909-232706000">Variational quantum optimization with multibasis encodings</a>; Physical Review Research; Vol. 4; No. 3; Art. No. 4.033142; <a href="https://doi.org/10.1103/physrevresearch.4.033142">10.1103/physrevresearch.4.033142</a></li>
<li>Cao, Yulong and Xu, Danfei, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221221-004623591">Robust Trajectory Prediction against Adversarial Attacks</a>; <a href="https://doi.org/10.48550/arXiv.2208.00094">10.48550/arXiv.2208.00094</a></li>
<li>Qiao, Zhuoran and Christensen, Anders S., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203900979">Informing geometric deep learning with electronic interactions to accelerate quantum chemistry</a>; Proceedings of the National Academy of Sciences; Vol. 119; No. 31; Art. No. e2205221119; PMCID PMC9351474; <a href="https://doi.org/10.1073/pnas.2205221119">10.1073/pnas.2205221119</a></li>
<li>Li, Zongyi and Huang, Daniel Zhengyu, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212430395">Fourier Neural Operator with Learned Deformations for PDEs on General Geometries</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2207.05209">10.48550/arXiv.arXiv.2207.05209</a></li>
<li>Yang, Haoyu and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224555708">Large Scale Mask Optimization Via Convolutional Fourier Neural Operator and Litho-Guided Self Training</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2207.04056">10.48550/arXiv.arXiv.2207.04056</a></li>
<li>Yang, Haoyu and Li, Zongyi, el al. (2022) <a href="https://authors.library.caltech.edu/records/c4s74-std58">Generic lithography modeling with dual-band optics-inspired neural networks</a>; ISBN 9781450391429; DAC '22: Proceedings of the 59th ACM/IEEE Design Automation Conference; 973-978; <a href="https://doi.org/10.1145/3489517.3530580">10.1145/3489517.3530580</a></li>
<li>Xu, Pan and Zheng, Hongkai, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212437915">Langevin Monte Carlo for Contextual Bandits</a>; Proceedings of Machine Learning Research; Vol. 162; 24830-24850; <a href="https://doi.org/10.48550/arXiv.arXiv.2206.11254">10.48550/arXiv.arXiv.2206.11254</a></li>
<li>Kargin, Taylan and Lale, Sahin, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212445251">Thompson Sampling Achieves Õ(√T) Regret in Linear  Quadratic Control</a>; Proceedings of Machine Learning Research; Vol. 178; 3235-3284; <a href="https://doi.org/10.48550/arXiv.2206.08520">10.48550/arXiv.2206.08520</a></li>
<li>Fan, Linxi and Wang, Guanzhi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212441682">MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2206.08853">10.48550/arXiv.arXiv.2206.08853</a></li>
<li>Lale, Sahin and Shi, Yuanyuan, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212504090">KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed Stability in Nonlinear Dynamical Systems</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2206.01704">10.48550/arXiv.arXiv.2206.01704</a></li>
<li>Jiang, Huaizu and Ma, Xiaojian, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230315-336421000.7">Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions</a>; <a href="https://doi.org/10.1109/cvpr52688.2022.01847">10.1109/cvpr52688.2022.01847</a></li>
<li>Elezi, Ismail and Yu, Zhiding, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230315-336419000.6">Not All Labels Are Equal: Rationalizing The Labeling Costs for Training Object Detection</a>; ISBN 978-1-6654-6946-3; 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 14472-14781; <a href="https://doi.org/10.1109/cvpr52688.2022.01409">10.1109/cvpr52688.2022.01409</a></li>
<li>Li, Zhiqi and Wang, Wenhai, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230315-336427000.8">Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers</a>; ISBN 978-1-6654-6946-3; 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 1270-1279; <a href="https://doi.org/10.1109/cvpr52688.2022.00134">10.1109/cvpr52688.2022.00134</a></li>
<li>Shi, Yuanyuan and Qu, Guannan, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230315-336401000.3">Stability Constrained Reinforcement Learning for Real-Time Voltage Control</a>; 2022 American Control Conference (ACC); 2715-2721; <a href="https://doi.org/10.23919/acc53348.2022.9867476">10.23919/acc53348.2022.9867476</a></li>
<li>Kugener, Guillaume and Zhu, Yichao, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220413-607067100">Deep Neural Networks Can Accurately Detect Blood Loss and Hemorrhage Control Task Success From Video</a>; Neurosurgery; Vol. 90; No. 6; 823-829; <a href="https://doi.org/10.1227/neu.0000000000001906">10.1227/neu.0000000000001906</a></li>
<li>Wang, Xinlong and Yu, Zhiding, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230315-336403000.4">FreeSOLO: Learning to Segment Objects without Annotations</a>; <a href="https://doi.org/10.1109/cvpr52688.2022.01378">10.1109/cvpr52688.2022.01378</a></li>
<li>Jiang, Huaizu and Ma, Xiaojian, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212507605">Bongard-HOI: Benchmarking Few-Shot Visual Reasoning for Human-Object Interactions</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2205.13803">10.48550/arXiv.arXiv.2205.13803</a></li>
<li>Wong, Josiah and Makoviychuk, Viktor, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230315-336082000.1">OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation</a>; <a href="https://doi.org/10.1109/icra46639.2022.9811967">10.1109/icra46639.2022.9811967</a></li>
<li>Pangal, Dhiraj J. and Kugener, Guillaume, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220124-214564000">Expert surgeons and deep learning models can predict the outcome of surgical hemorrhage from 1 min of video</a>; Scientific Reports; Vol. 12; Art. No. 8137; PMCID PMC9114003; <a href="https://doi.org/10.1038/s41598-022-11549-2">10.1038/s41598-022-11549-2</a></li>
<li>Nie, Weili and Guo, Brandon, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220715-174841781">Diffusion Models for Adversarial Purification</a>; Proceedings of Machine Learning Research; Vol. 162; 16805-16827; <a href="https://doi.org/10.48550/arXiv.2205.07460">10.48550/arXiv.2205.07460</a></li>
<li>Kiyasseh, Dani and Ma, Runzhuo, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212511473">Quantification of Robotic Surgeries with Vision-Based Deep Learning</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2205.03028">10.48550/arXiv.arXiv.2205.03028</a></li>
<li>Rahman, Md Ashiqur and Florez, Manuel A., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212515070">Generative Adversarial Neural Operators</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2205.03017">10.48550/arXiv.arXiv.2205.03017</a></li>
<li>O'Connell, Michael and Shi, Guanya, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220505-792409800">Neural-Fly enables rapid learning for agile flight in strong winds</a>; Science Robotics; Vol. 7; No. 66; Art. No. eabm6597; <a href="https://doi.org/10.1126/scirobotics.abm6597">10.1126/scirobotics.abm6597</a></li>
<li>Wen, Gege and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220412-15492000">U-FNO—An enhanced Fourier neural operator-based deep-learning model for multiphase flow</a>; Advances in Water Resources; Vol. 163; Art. No. 104180; <a href="https://doi.org/10.1016/j.advwatres.2022.104180">10.1016/j.advwatres.2022.104180</a></li>
<li>Anandkumar, Anima (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220805-757905000">ScaDL 2022 Invited Talk 3: Million-x speedups through convergence of AI and HPC</a>; ISBN 978-1-6654-9747-3; 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW); 1041; <a href="https://doi.org/10.1109/ipdpsw55747.2022.00168">10.1109/ipdpsw55747.2022.00168</a></li>
<li>Roberts, Sidney I. and Cen, Steven Y., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220912-920381000">The Relationship Between Technical Skills, Cognitive Workload, and Errors During Robotic Surgical Exercises</a>; Journal of Endourology; Vol. 36; No. 5; 712-720; PMCID PMC9145254; <a href="https://doi.org/10.1089/end.2021.0790">10.1089/end.2021.0790</a></li>
<li>Zhou, Daquan and Yu, Zhiding, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212518736">Understanding The Robustness in Vision Transformers</a>; Proceedings of Machine Learning Research; Vol. 162; 27378-27394; <a href="https://doi.org/10.48550/arXiv.2204.12451">10.48550/arXiv.2204.12451</a></li>
<li>Ma, Xiaojian and Nie, Weili, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212522171">RelViT: Concept-guided Vision Transformer for Visual Relational Reasoning</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2204.11167">10.48550/arXiv.arXiv.2204.11167</a></li>
<li>Xie, Enze and Yu, Zhiding, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212525848">M²BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified   Birds-Eye View Representation</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2207.05850">10.48550/arXiv.arXiv.2207.05850</a></li>
<li>Shen, Bokui and Jiang, Zhenyu, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224611031">ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2203.06856">10.48550/arXiv.arXiv.2203.06856</a></li>
<li>Yang, Haoyu and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224607394">Generic Lithography Modeling with Dual-band Optics-Inspired Neural Networks</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2203.08616">10.48550/arXiv.arXiv.2203.08616</a></li>
<li>Kugener, Guillaume and Pangal, Dhiraj J., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220329-772928599">Utility of the Simulated Outcomes Following Carotid Artery Laceration Video Data Set for Machine Learning Applications</a>; JAMA Network Open; Vol. 5; No. 3; Art. No. e223177; PMCID PMC8938712; <a href="https://doi.org/10.1001/jamanetworkopen.2022.3177">10.1001/jamanetworkopen.2022.3177</a></li>
<li>Wang, Xinlong and Yu, Zhiding, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224614512">FreeSOLO: Learning to Segment Objects without Annotations</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2202.12181">10.48550/arXiv.arXiv.2202.12181</a></li>
<li>Pathak, Jaideep and Subramanian, Shashank, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224617950">FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2202.11214">10.48550/arXiv.arXiv.2202.11214</a></li>
<li>Li, Shuang and Puig, Xavier, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224621396">Pre-Trained Language Models for Interactive Decision-Making</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2202.01771">10.48550/arXiv.arXiv.2202.01771</a></li>
<li>Liu, Burigede and Kovachki, Nikola, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210225-132721680">A learning-based multiscale method and its application to inelastic impact problems</a>; Journal of the Mechanics and Physics of Solids; Vol. 158; Art. No. 104668; <a href="https://doi.org/10.1016/j.jmps.2021.104668">10.1016/j.jmps.2021.104668</a></li>
<li>Prabhumoye, Shrimai and Kocielnik, Rafal, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224624824">Few-shot Instruction Prompts for Pretrained Language Models to Detect Social Biases</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2112.07868">10.48550/arXiv.arXiv.2112.07868</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220210-721786000">Model Learning Predictive Control in Nonlinear Dynamical Systems</a>; ISBN 978-1-6654-3659-5; 2021 60th IEEE Conference on Decision and Control (CDC); 757-762; <a href="https://doi.org/10.1109/cdc45484.2021.9683670">10.1109/cdc45484.2021.9683670</a></li>
<li>Huang, Kevin and Lale, Sahin, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224628331">CEM-GD: Cross-Entropy Method with Gradient Descent Planner for Model-Based Reinforcement Learning</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2112.07746">10.48550/arXiv.arXiv.2112.07746</a></li>
<li>Lavin, Alexander and Zenil, Hector, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224632616">Simulation Intelligence: Towards a New Generation of Scientific Methods</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2112.03235">10.48550/arXiv.arXiv.2112.03235</a></li>
<li>Xie, Enze and Wang, Wenhai, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-232723221">SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers</a>; ISBN 9781713845393; Advances in Neural Information Processing Systems 34 (NeurIPS 2021); 1-14</li>
<li>Yu, Zhiding and Huang, Rui, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-225518550">Coupled Segmentation and Edge Learning via Dynamic Graph Propagation</a>; ISBN 9781713845393; 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 1-14</li>
<li>Sun, Jiachen and Cao, Yulong, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-232011120">Adversarially Robust 3D Point Cloud Recognition Using Self-Supervisions</a>; ISBN 9781713845393; 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 1-15</li>
<li>Zhu, Chen and Ping, Wei, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-230911029">Long-Short Transformer: Efficient Transformers for Language and Vision</a>; ISBN 9781713845393; Thirty-fifth Conference on Neural Information Processing Systems 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 1-14</li>
<li>Christensen, Anders S. and Sirumalla, Sai Krishna, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203931813">OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy</a>; Journal of Chemical Physics; Vol. 155; No. 20; Art. No. 204103; <a href="https://doi.org/10.1063/5.0061990">10.1063/5.0061990</a></li>
<li>Guibas, John and Mardani, Morteza, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224636083">Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2111.13587">10.48550/arXiv.arXiv.2111.13587</a></li>
<li>Dommer, Abigail and Casalino, Lorenzo, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220208-947187000">#COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy of Delta SARS-CoV-2 in a Respiratory Aerosol</a>; PMCID PMC8609898; <a href="https://doi.org/10.1101/2021.11.12.468428">10.1101/2021.11.12.468428</a></li>
<li>Ma, Jeffrey and Letcher, Alistair, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224639640">Polymatrix Competitive Gradient Descent</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2111.08565">10.48550/arXiv.arXiv.2111.08565</a></li>
<li>Lee, Youngwoon and Lim, Joseph J., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224643553">Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization</a>; Proceedings of Machine Learning Research; Vol. 164; 406-416; <a href="https://doi.org/10.48550/arXiv.arXiv.2111.07999">10.48550/arXiv.arXiv.2111.07999</a></li>
<li>Li, Zongyi and Zheng, Hongkai, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224647405">Physics-Informed Neural Operator for Learning Partial Differential Equations</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2111.03794">10.48550/arXiv.arXiv.2111.03794</a></li>
<li>Huang, Yujia and Zhang, Huan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224653496">Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds</a>; ISBN 9781713845393; Advances in Neural Information Processing Systems 34 (NeurIPS 2021); 22745-22757; <a href="https://doi.org/10.48550/arXiv.arXiv.2111.01395">10.48550/arXiv.arXiv.2111.01395</a></li>
<li>Mahajan, Anuj and Samvelyan, Mikayel, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224657047">Reinforcement Learning in Factored Action Spaces using Tensor Decompositions</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2110.14538">10.48550/arXiv.arXiv.2110.14538</a></li>
<li>Wang, Haotao and Xiao, Chaowei, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224700672">AugMax: Adversarial Composition of Random Augmentations for Robust Training</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2110.13771">10.48550/arXiv.arXiv.2110.13771</a></li>
<li>Zhao, Jiawei and Schäfer, Florian, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224704502">ZerO Initialization: Initializing Residual Networks with only Zeros and Ones</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2110.12661">10.48550/arXiv.arXiv.2110.12661</a></li>
<li>Nie, Weili and Vahdat, Arash, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224708055">Controllable and Compositional Generation with Latent-Space Energy-Based Models</a>; ISBN 9781713845393; Advances in Neural Information Processing Systems 34 (NeurIPS 2021); 15498-15512; <a href="https://doi.org/10.48550/arXiv.arXiv.2110.10873">10.48550/arXiv.arXiv.2110.10873</a></li>
<li>Trifan, Anda and Gorgun, Defne, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211015-222208091">Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-Transcription Machinery in Action</a>; <a href="https://doi.org/10.1101/2021.10.09.463779">10.1101/2021.10.09.463779</a></li>
<li>Jeong, Yoonwoo and Ahn, Seokjun, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220715-171630599">Self-Calibrating Neural Radiance Fields</a>; ISBN 978-1-6654-2812-5; 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 5826-5834; <a href="https://doi.org/10.1109/ICCV48922.2021.00579">10.1109/ICCV48922.2021.00579</a></li>
<li>Wong, Josiah and Makoviychuk, Viktor, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224711626">OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2110.00704">10.48550/arXiv.arXiv.2110.00704</a></li>
<li>Lan, Shiyi and Yu, Zhiding, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203854134">DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision</a>; ISBN 978-1-6654-2812-5; 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 3386-3396; <a href="https://doi.org/10.1109/ICCV48922.2021.00339">10.1109/ICCV48922.2021.00339</a></li>
<li>Shi, Yuanyuan and Qu, Guannan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220304-172338061">Stability Constrained Reinforcement Learning for Real-Time Voltage Control</a>; <a href="https://doi.org/10.48550/arXiv.2109.14854">10.48550/arXiv.2109.14854</a></li>
<li>Bharadhwaj, Homanga and Huang, De-An, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224715197">Auditing AI models for Verified Deployment under Semantic Specifications</a>; <a href="https://doi.org/10.48550/arXiv.2109.12456">10.48550/arXiv.2109.12456</a></li>
<li>Hung, Andrew J. and Liu, Yan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211008-183538597">Deep Learning to Automate Technical Skills Assessment in Robotic Surgery</a>; JAMA Surgery; Vol. 156; No. 11; 1059-1060; <a href="https://doi.org/10.1001/jamasurg.2021.3651">10.1001/jamasurg.2021.3651</a></li>
<li>Li, Zhiqi and Wang, Wenhai, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224718853">Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers</a>; <a href="https://doi.org/10.48550/arXiv.2109.03814">10.48550/arXiv.2109.03814</a></li>
<li>Wen, Gege and Li, Zongyi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224722475">U-FNO -- An enhanced Fourier neural operator-based deep-learning model for multiphase flow</a>; <a href="https://doi.org/10.48550/arXiv.arXiv.2109.03697">10.48550/arXiv.arXiv.2109.03697</a></li>
<li>Kovachki, Nikola and Li, Zongyi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-204010794">Neural Operator: Learning Maps Between Function Spaces</a>; <a href="https://doi.org/10.48550/arXiv.2108.08481">10.48550/arXiv.2108.08481</a></li>
<li>Srikanth, Maya and Liu, Anqi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210510-121148191">Dynamic Social Media Monitoring for Fast-Evolving Online Discussions</a>; ISBN 978-1-4503-8332-5; Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &amp; Data Mining; 3576-3584; <a href="https://doi.org/10.1145/3447548.3467171">10.1145/3447548.3467171</a></li>
<li>Chan, Justin and Pangal, Dhiraj J., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210910-182725636">A systematic review of virtual reality for the assessment of technical skills in neurosurgery</a>; Neurosurgical Focus; Vol. 51; No. 2; Art. No. E15; <a href="https://doi.org/10.3171/2021.5.focus21210">10.3171/2021.5.focus21210</a></li>
<li>Chrysos, Grigorios G. and Kossaifi, Jean, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120158552">Unsupervised Controllable Generation with Self-Training</a>; ISBN 978-1-6654-3900-8; 2021 International Joint Conference on Neural Networks (IJCNN); 1-8; <a href="https://doi.org/10.1109/IJCNN52387.2021.9534045">10.1109/IJCNN52387.2021.9534045</a></li>
<li>Zhu, Chen and Ping, Wei, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203935342">Long-Short Transformer: Efficient Transformers for Language and Vision</a>; <a href="https://doi.org/10.48550/arXiv.2107.02192">10.48550/arXiv.2107.02192</a></li>
<li>Mahajan, Anuj and Samvelyan, Mikayel, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203904421">Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning</a>; Proceedings of Machine Learning Research; Vol. 139; 7301-7312; <a href="https://doi.org/10.48550/arXiv.2106.00136">10.48550/arXiv.2106.00136</a></li>
<li>Chang, Nadine and Yu, Zhiding, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210510-134322482">Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection</a>; Proceedings of Machine Learning Research; Vol. 139; 1463-1472; <a href="https://doi.org/10.48550/arXiv.2104.05702">10.48550/arXiv.2104.05702</a></li>
<li>Fan, Linxi and Wang, Guanzhi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203918113">SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies</a>; Proceedings of Machine Learning Research; Vol. 139; 3088-3099; <a href="https://doi.org/10.48550/arXiv.2106.09678">10.48550/arXiv.2106.09678</a></li>
<li>Liu, Bo and Liu, Qiang, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203857558">Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition</a>; Proceedings of Machine Learning Research; Vol. 139; 6860-6870; <a href="https://doi.org/10.48550/arXiv.2105.08692">10.48550/arXiv.2105.08692</a></li>
<li>Zhao, Jiawei and Dai, Steve, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203928395">Low-Precision Training in Logarithmic Number System using Multiplicative Weight Update</a>; <a href="https://doi.org/10.48550/arXiv.2106.13914">10.48550/arXiv.2106.13914</a></li>
<li>Patti, Taylor L. and Kossaifi, Jean, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203924970">Nonlinear Quantum Optimization Algorithms via Efficient Ising Model Encodings</a>; <a href="https://doi.org/10.48550/arXiv.2106.13304">10.48550/arXiv.2106.13304</a></li>
<li>Elezi, Ismail and Yu, Zhiding, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203921545">Towards Reducing Labeling Cost in Deep Object Detection</a>; <a href="https://doi.org/10.48550/arXiv.2106.11921">10.48550/arXiv.2106.11921</a></li>
<li>Li, Zongyi and Kovachki, Nikola, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210719-210135878">Learning Dissipative Dynamics in Chaotic Systems</a>; <a href="https://doi.org/10.48550/arXiv.2106.06898">10.48550/arXiv.2106.06898</a></li>
<li>Qu, Guannan and Shi, Yuanyuan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210510-092451106">Stable Online Control of Linear Time-Varying Systems</a>; Proceedings of Machine Learning Research; Vol. 144; 742-753; <a href="https://doi.org/10.48550/arXiv.2104.14134">10.48550/arXiv.2104.14134</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210727-162630002">Finite-time System Identification and Adaptive Control in Autoregressive Exogenous Systems</a>; Proceedings of Machine Learning Research; Vol. 144; 967-979</li>
<li>Lale, Sahin and Teke, Oguzhan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210225-132728423">Stability and Identification of Random Asynchronous Linear Time-Invariant Systems</a>; Proceedings of Machine Learning Research; Vol. 144; 651-663; <a href="https://doi.org/10.48550/arXiv.2012.04160">10.48550/arXiv.2012.04160</a></li>
<li>Pan, Xinlei and Garg, Animesh, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210225-132725054">Emergent Hand Morphology and Control from Optimizing Robust Grasps of Diverse Objects</a>; ISBN 978-1-7281-9077-8; 2021 IEEE International Conference on Robotics and Automation (ICRA); 7540-7547; <a href="https://doi.org/10.1109/ICRA48506.2021.9562092">10.1109/ICRA48506.2021.9562092</a></li>
<li>Yu, Jing and Gehring, Clement, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210727-172214672">Robust Reinforcement Learning: A Constrained Game-theoretic Approach</a>; Proceedings of Machine Learning Research; Vol. 144; 1242-1254</li>
<li>Xie, Enze and Wang, Wenhai, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-232747640">SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers</a>; <a href="https://doi.org/10.48550/arXiv.2105.15203">10.48550/arXiv.2105.15203</a></li>
<li>Shi, Guanya and Zhu, Yifeng, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210225-132731801">Fast Uncertainty Quantification for Deep Object Pose Estimation</a>; ISBN 978-1-7281-9077-8; 2021 IEEE International Conference on Robotics and Automation (ICRA); 5200-5207; <a href="https://doi.org/10.1109/ICRA48506.2021.9561483">10.1109/ICRA48506.2021.9561483</a></li>
<li>Ravi Tej, Akella and Azizzadenesheli, Kamyar, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120212166">Deep Bayesian Quadrature Policy Optimization</a>; <a href="https://doi.org/10.48550/arXiv.2006.15637">10.48550/arXiv.2006.15637</a></li>
<li>Panagakis, Yannis and Kossaifi, Jean, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210611-152119929">Tensor Methods in Computer Vision and Deep Learning</a>; Proceedings of the IEEE; Vol. 109; No. 5; 863-890; <a href="https://doi.org/10.1109/jproc.2021.3074329">10.1109/jproc.2021.3074329</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200403-141835981">Adaptive Control and Regret Minimization in Linear Quadratic Gaussian (LQG) Setting</a>; ISBN 978-1-6654-4197-1; 2021 American Control Conference (ACC); 2517-2522; <a href="https://doi.org/10.23919/ACC50511.2021.9483309">10.23919/ACC50511.2021.9483309</a></li>
<li>Luongo, Francisco and Hakim, Ryan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200928-140721280">Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery</a>; Surgery; Vol. 169; No. 5; 1240-1244; PMCID PMC7994208; <a href="https://doi.org/10.1016/j.surg.2020.08.016">10.1016/j.surg.2020.08.016</a></li>
<li>Chen, Wuyang and Yu, Zhiding, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210510-133253602">Contrastive Syn-to-Real Generalization</a>; <a href="https://doi.org/10.48550/arXiv.2104.02290">10.48550/arXiv.2104.02290</a></li>
<li>Kashinath, K. and Mustafa, M., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210223-154127043">Physics-informed machine learning: case studies for weather and climate modelling</a>; Philosophical Transactions A: Mathematical, Physical and Engineering Sciences; Vol. 379; No. 2194; Art. No. 20200093; <a href="https://doi.org/10.1098/rsta.2020.0093">10.1098/rsta.2020.0093</a></li>
<li>Zhao, Eric and Liu, Anqi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201110-074357009">Active Learning under Label Shift</a>; Proceedings of Machine Learning Research; Vol. 130; 3412-3420; <a href="https://doi.org/10.48550/arXiv.2007.08479">10.48550/arXiv.2007.08479</a></li>
<li>Nakka, Yashwanth Kumar and Liu, Anqi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200526-150616242">Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems</a>; IEEE Robotics and Automation Letters; Vol. 6; No. 2; 389-396; <a href="https://doi.org/10.1109/LRA.2020.3044033">10.1109/LRA.2020.3044033</a></li>
<li>Ghodsi, Zahra and Hari, Siva Kumar Sastry, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210510-132935112">Generating and Characterizing Scenarios for Safety Testing of Autonomous Vehicles</a>; <a href="https://doi.org/10.48550/arXiv.2103.07403">10.48550/arXiv.2103.07403</a></li>
<li>Liu, Anqi and Liu, Hao, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210225-132714927">Disentangling Observed Causal Effects from Latent Confounders using Method of Moments</a>; <a href="https://doi.org/10.48550/arXiv.2101.06614">10.48550/arXiv.2101.06614</a></li>
<li>Qiao, Zhuoran and Ding, Feizhi, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201203-151028849">Multi-task learning for electronic structure to predict and explore molecular potential energy surfaces</a>; <a href="https://doi.org/10.48550/arXiv.2011.02680">10.48550/arXiv.2011.02680</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-222544264">Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems</a>; ISBN 9781713829546; Advances in neural information processing systems 33 pre-proceedings (NeurIPS 2020); 1-13</li>
<li>Li, Yunzhu and Torralba, Antonio, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201109-123525639">Causal Discovery in Physical Systems from Videos</a>; <a href="https://doi.org/10.48550/arXiv.2007.00631">10.48550/arXiv.2007.00631</a></li>
<li>Nie, Weili and Yu, Zhiding, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201109-074710530">Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and Reasoning</a>; <a href="https://doi.org/10.48550/arXiv.2010.00763">10.48550/arXiv.2010.00763</a></li>
<li>Anandkumar, Animashree (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210507-122910987">Role of HPC in next-generation AI</a>; ISBN 9781665422925; 2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC); xx; <a href="https://doi.org/10.1109/hipc50609.2020.00010">10.1109/hipc50609.2020.00010</a></li>
<li>Huang, Yujia and Gornet, James, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120201944">Neural Networks with Recurrent Generative Feedback</a>; <a href="https://doi.org/10.48550/arXiv.2007.09200">10.48550/arXiv.2007.09200</a></li>
<li>Su, Jiahao and Byeon, Wonmin, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200402-134911700">Convolutional Tensor-Train LSTM for Spatio-temporal Learning</a>; <a href="https://doi.org/10.48550/arXiv.2002.09131">10.48550/arXiv.2002.09131</a></li>
<li>Bernstein, Jeremy and Zhao, Jiawei, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120208748">Learning compositional functions via multiplicative weight updates</a>; <a href="https://doi.org/10.48550/arXiv.2006.14560">10.48550/arXiv.2006.14560</a></li>
<li>Li, Zongyi and Kovachki, Nikola, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120222366">Multipole Graph Neural Operator for Parametric Partial Differential Equations</a>; <a href="https://doi.org/10.48550/arXiv.2006.09535">10.48550/arXiv.2006.09535</a></li>
<li>Jiang, Chiyu Max and Esmaeilzadeh, Soheil, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200526-153937049">MESHFREEFLOWNET: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework</a>; ISBN 978-1-7281-9998-6; SC20: International Conference for High Performance Computing, Networking, Storage and Analysis; 1-15; <a href="https://doi.org/10.1109/SC41405.2020.00013">10.1109/SC41405.2020.00013</a></li>
<li>Li, Zongyi and Kovachki, Nikola, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120140981">Fourier Neural Operator for Parametric Partial Differential Equations</a>; <a href="https://doi.org/10.48550/arXiv.2010.08895">10.48550/arXiv.2010.08895</a></li>
<li>Wang, Haoxuan and Liu, Anqi, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120148344">Distributionally Robust Learning for Unsupervised Domain Adaptation</a>; <a href="https://doi.org/10.48550/arXiv.2010.05784">10.48550/arXiv.2010.05784</a></li>
<li>Xu, Peng and Patwary, Mostofa, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120144603">MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models</a>; <a href="https://doi.org/10.48550/arXiv.2010.00840">10.48550/arXiv.2010.00840</a></li>
<li>Chu, Linda C. and Anandkumar, Animashree, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200420-154710784">The Potential Dangers of Artificial Intelligence for Radiology and Radiologists</a>; Journal of the American College of Radiology; Vol. 17; No. 10; 1309-1311; PMCID PMC7164850; <a href="https://doi.org/10.1016/j.jacr.2020.04.010">10.1016/j.jacr.2020.04.010</a></li>
<li>Qiao, Zhuoran and Welborn, Matthew, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200818-095759329">OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features</a>; Journal of Chemical Physics; Vol. 153; No. 12; Art. No. 124111; <a href="https://doi.org/10.1063/5.0021955">10.1063/5.0021955</a></li>
<li>Ren, Hongyu and Zhu, Yuke, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120151731">OCEAN: Online Task Inference for Compositional Tasks with Context Adaptation</a>; Proceedings of Machine Learning Research; Vol. 124; 1378-1387; <a href="https://doi.org/10.48550/arXiv.2008.07087">10.48550/arXiv.2008.07087</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120155157">Explore More and Improve Regret in Linear Quadratic Regulators</a>; <a href="https://doi.org/10.48550/arXiv.2007.12291">10.48550/arXiv.2007.12291</a></li>
<li>Kossaifi, Jean and Lipton, Zachary C., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085728859">Tensor Regression Networks</a>; Journal of Machine Learning Research; Vol. 21; 1-21; <a href="https://doi.org/10.48550/arXiv.1707.08308">10.48550/arXiv.1707.08308</a></li>
<li>Chen, Wuyang and Yu, Zhiding, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120205331">Automated Synthetic-to-Real Generalization</a>; Proceedings of Machine Learning Research; Vol. 119; 1746-1756; <a href="https://doi.org/10.48550/arXiv.2007.06965">10.48550/arXiv.2007.06965</a></li>
<li>Baldini, Francesca and Anandkumar, Animashree, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200108-154918519">Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data</a>; ISBN 9781538682661; 2020 American Control Conference (ACC); 2961-2966; <a href="https://doi.org/10.23919/ACC45564.2020.9147400">10.23919/ACC45564.2020.9147400</a></li>
<li>Chen, Beidi and Liu, Weiyang, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200109-084932688">Angular Visual Hardness</a>; Proceedings of Machine Learning Research; Vol. 119; 1637-1648; <a href="https://doi.org/10.48550/arXiv.1912.02279">10.48550/arXiv.1912.02279</a></li>
<li>Prajapat, Manish and Azizzadenesheli, Kamyar, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120215567">Competitive Policy Optimization</a>; <a href="https://doi.org/10.48550/arXiv.2006.10611">10.48550/arXiv.2006.10611</a></li>
<li>Schäfer, Florian and Anandkumar, Anima, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120218966">Competitive Mirror Descent</a>; <a href="https://doi.org/10.48550/arXiv.2006.10179">10.48550/arXiv.2006.10179</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200402-131032742">Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems</a>; <a href="https://doi.org/10.48550/arXiv.2003.11227">10.48550/arXiv.2003.11227</a></li>
<li>Li, Zongyi and Kovachki, Nikola, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200402-133318521">Neural Operator: Graph Kernel Network for Partial Differential Equations</a>; <a href="https://doi.org/10.48550/arXiv.2003.03485">10.48550/arXiv.2003.03485</a></li>
<li>Nie, Weili and Karras, Tero, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200402-135651804">Semi-Supervised StyleGAN for Disentanglement Learning</a>; <a href="https://doi.org/10.48550/arXiv.2003.03461">10.48550/arXiv.2003.03461</a></li>
<li>Shi, Yang and Anandkumar, Animashree (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085821224">Higher-order Count Sketch: Dimensionality Reduction That Retains Efficient Tensor Operations</a>; ISBN 978-1-7281-6457-1; 2020 Data Compression Conference (DCC); 394; <a href="https://doi.org/10.1109/DCC47342.2020.00045">10.1109/DCC47342.2020.00045</a></li>
<li>Ross, Zachary E. and Trugman, Daniel T., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190905-154247884">Directivity Modes of Earthquake Populations with Unsupervised Learning</a>; Journal of Geophysical Research. Solid Earth; Vol. 125; No. 2; Art. No. e2019JB018299; <a href="https://doi.org/10.1029/2019JB018299">10.1029/2019JB018299</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200214-105620768">Regret Minimization in Partially Observable Linear Quadratic Control</a>; <a href="https://doi.org/10.48550/arXiv.2002.00082">10.48550/arXiv.2002.00082</a></li>
<li>Nguyen, Tan M. and Garg, Animesh, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200109-083652974">InfoCNF: An Efficient Conditional Continuous Normalizing Flow with Adaptive Solvers</a>; <a href="https://doi.org/10.48550/arXiv.1912.03978">10.48550/arXiv.1912.03978</a></li>
<li>Schäfer, Florian and Anandkumar, Anima (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190905-154241002">Competitive Gradient Descent</a>; <a href="https://doi.org/10.48550/arXiv.1905.12103">10.48550/arXiv.1905.12103</a></li>
<li>Janzamin, Majid and Ge, Rong, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200526-130837701">Spectral Learning on Matrices and Tensors</a>; Foundations and Trends in Machine Learning; Vol. 12; No. 5-6; 393-536; <a href="https://doi.org/10.1561/2200000057">10.1561/2200000057</a></li>
<li>Liu, Anqi and Srikanth, Maya, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200108-154406622">Finding Social Media Trolls: Dynamic Keyword Selection Methods for Rapidly-Evolving Online Debates</a>; <a href="https://doi.org/10.48550/arXiv.1911.05332">10.48550/arXiv.1911.05332</a></li>
<li>Liu, Anqi and Liu, Hao, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200109-085907638">Triply Robust Off-Policy Evaluation</a>; <a href="https://doi.org/10.48550/arXiv.1911.05811">10.48550/arXiv.1911.05811</a></li>
<li>Arabshahi, Forough and Lu, Zhichu, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200109-090330653">Memory Augmented Recursive Neural Networks</a>; <a href="https://doi.org/10.48550/arXiv.1911.01545">10.48550/arXiv.1911.01545</a></li>
<li>Schäfer, Florian and Zheng, Hongkai, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200109-090758476">Implicit competitive regularization in GANs</a>; <a href="https://doi.org/10.48550/arXiv.1910.05852">10.48550/arXiv.1910.05852</a></li>
<li>Jain, Shobhit and Bodapati, Sravan Babu, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200109-091458616">Multi Sense Embeddings from Topic Models</a>; <a href="https://doi.org/10.48550/arXiv.1909.07746">10.48550/arXiv.1909.07746</a></li>
<li>Huang, Yujia and Dai, Sihui, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190905-154251302">Out-of-Distribution Detection Using Neural Rendering Generative Models</a>; <a href="https://doi.org/10.48550/arXiv.1907.04572">10.48550/arXiv.1907.04572</a></li>
<li>Huang, Furong and Naresh, Niranjan Uma, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220107-163918011">Guaranteed Scalable Learning of Latent Tree Models</a>; Proceedings of Machine Learning Research; Vol. 115; 883-893; <a href="https://doi.org/10.48550/arXiv.1406.4566">10.48550/arXiv.1406.4566</a></li>
<li>Zhang, Amy and Lipton, Zachary C., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190905-154244448">Learning Causal State Representations of Partially Observable Environments</a>; <a href="https://doi.org/10.48550/arXiv.1906.10437">10.48550/arXiv.1906.10437</a></li>
<li>Liu, Anqi and Shi, Guanya, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190905-154307157">Robust Regression for Safe Exploration in Control</a>; <a href="https://doi.org/10.48550/arXiv.1906.05819">10.48550/arXiv.1906.05819</a></li>
<li>Cvitkovic, Milan and Singh, Badal, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085810844">Open Vocabulary Learning on Source Code with a Graph-Structured Cache</a>; Proceedings of Machine Learning Research; Vol. 97; 1475-1485; <a href="https://doi.org/10.48550/arXiv.1810.08305">10.48550/arXiv.1810.08305</a></li>
<li>Shi, Guanya and Shi, Xichen, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190205-100744248">Neural Lander: Stable Drone Landing Control using Learned Dynamics</a>; ISBN 978-1-5386-6027-0; 2019 International Conference on Robotics and Automation (ICRA); 9784-9790; <a href="https://doi.org/10.1109/ICRA.2019.8794351">10.1109/ICRA.2019.8794351</a></li>
<li>Kwok, Roberta and Ranade, Gireeja, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200302-111944472">Junior AI researchers are in demand by universities and industry</a>; Nature; Vol. 568; No. 7753; 581-583; <a href="https://doi.org/10.1038/d41586-019-01248-w">10.1038/d41586-019-01248-w</a></li>
<li>Azizzadenesheli, Kamyar and Liu, Anqi, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085824665">Regularized Learning for Domain Adaptation under Label Shifts</a>; <a href="https://doi.org/10.48550/arXiv.1903.09734">10.48550/arXiv.1903.09734</a></li>
<li>Hu, Peiyun and Lipton, Zachary C., el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085746172">Active Learning with Partial Feedback</a>; <a href="https://doi.org/10.48550/arXiv.1802.07427">10.48550/arXiv.1802.07427</a></li>
<li>Kolbeinsson, Arinbjörn and Kossaifi, Jean, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190905-154237568">Robust Deep Networks with Randomized Tensor Regression Layers</a>; <a href="https://doi.org/10.48550/arXiv.1902.10758">10.48550/arXiv.1902.10758</a></li>
<li>Kolbeinsson, Arinbjörn and Kossaifi, Jean, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-162823824">Stochastically Rank-Regularized Tensor Regression Networks</a>; <a href="https://doi.org/10.48550/arXiv.1902.10758">10.48550/arXiv.1902.10758</a></li>
<li>Kossaifi, Jean and Panagakis, Yannis, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190228-133230688">TensorLy: Tensor Learning in Python</a>; Journal of Machine Learning Research; Vol. 20; No. 26; 1-6; <a href="https://doi.org/10.48550/arXiv.1610.09555">10.48550/arXiv.1610.09555</a></li>
<li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085817695">Stochastic Linear Bandits with Hidden Low Rank Structure</a>; <a href="https://doi.org/10.48550/arXiv.1901.09490">10.48550/arXiv.1901.09490</a></li>
<li>Ho, Nhat and Nguyen, Tan, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085814265">Neural Rendering Model: Joint Generation and Prediction for Semi-Supervised Learning</a>; <a href="https://doi.org/10.48550/arXiv.1811.02657">10.48550/arXiv.1811.02657</a></li>
<li>Azizzadenesheli, Kamyar and Bera, Manish Kumar, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085807408">Trust Region Policy Optimization for POMDPs</a>; <a href="https://doi.org/10.48550/arXiv.1810.07900">10.48550/arXiv.1810.07900</a></li>
<li>Bernstein, Jeremy and Zhao, Jiawei, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085803968">signSGD with Majority Vote is Communication Efficient And Fault Tolerant</a>; <a href="https://doi.org/10.48550/arXiv.1810.05291">10.48550/arXiv.1810.05291</a></li>
<li>Furlanello, Tommaso and Lipton, Zachary C., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085757099">Born Again Neural Networks</a>; Proceedings of Machine Learning Research; Vol. 80; 1607-1616; <a href="https://doi.org/10.48550/arXiv.1805.04770">10.48550/arXiv.1805.04770</a></li>
<li>Bernstein, Jeremy and Wang, Yu-Xiang, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085742729">signSGD: Compressed Optimisation for Non-Convex Problems</a>; Proceedings of Machine Learning Research; Vol. 80; 560-569; <a href="https://doi.org/10.48550/arXiv.1802.04434">10.48550/arXiv.1802.04434</a></li>
<li>Tschannen, Michael and Khanna, Aran, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085739295">StrassenNets: Deep Learning with a Multiplication Budget</a>; Proceedings of Machine Learning Research; Vol. 80; 4985-4994; <a href="https://doi.org/10.48550/arXiv.1712.03942">10.48550/arXiv.1712.03942</a></li>
<li>Athiwaratkun, Ben and Wilson, Andrew Gordon, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085800530">Probabilistic FastText for Multi-Sense Word Embeddings</a>; ISBN 978-1-948087-32-2; Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Art. No. P18-1001; <a href="https://doi.org/10.48550/arXiv.1806.02901">10.48550/arXiv.1806.02901</a></li>
<li>Khetan, Ashish and Lipton, Zachary C., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085735866">Learning From Noisy Singly-labeled Data</a>; <a href="https://doi.org/10.48550/arXiv.1712.04577">10.48550/arXiv.1712.04577</a></li>
<li>Arabshahi, Forough and Singh, Sameer, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085732435">Combining Symbolic Expressions and Black-box Function Evaluations in Neural Programs</a>; <a href="https://doi.org/10.48550/arXiv.1801.04342">10.48550/arXiv.1801.04342</a></li>
<li>Dhillon, Guneet S. and Azizzadenesheli, Kamyar, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085749625">Stochastic Activation Pruning for Robust Adversarial Defense</a>; <a href="https://doi.org/10.48550/arXiv.1803.01442">10.48550/arXiv.1803.01442</a></li>
<li>Shi, Yang and Furlanello, Tommaso, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085753056">Question Type Guided Attention in Visual Question Answering</a>; ISBN 978-3-030-01224-3; Computer Vision – ECCV 2018; 158-175; <a href="https://doi.org/10.1007/978-3-030-01225-0_10">10.1007/978-3-030-01225-0_10</a></li>
<li>Shen, Yanyao and Yun, Hyokun, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085725408">Deep Active Learning for Named Entity Recognition</a>; <a href="https://doi.org/10.48550/arXiv.1707.05928">10.48550/arXiv.1707.05928</a></li>
<li>Azizzadenesheli, Kamyar and Brunskill, Emma, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20181101-121222226">Efficient Exploration Through Bayesian Deep Q-Networks</a>; ISBN 9781728101248; 2018 Information Theory and Applications Workshop (ITA); 1-9; <a href="https://doi.org/10.1109/ita.2018.8503252">10.1109/ita.2018.8503252</a></li>
<li>Yu, Rose and Zheng, Stephan, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190205-113450468">Long-term Forecasting using Tensor-Train RNNs</a>; <a href="https://doi.org/10.48550/arXiv.1711.00073">10.48550/arXiv.1711.00073</a></li>
<li>Anandkumar, Anima and Deng, Yuan, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123333151">Homotopy Analysis for Tensor PCA</a>; Proceedings of Machine Learning Research; Vol. 65; 79-104; <a href="https://doi.org/10.48550/arXiv.1610.09322">10.48550/arXiv.1610.09322</a></li>
<li>Kossaifi, Jean and Khanna, Aran, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20180321-103123441">Tensor Contraction Layers for Parsimonious Deep Nets</a>; ISBN 978-1-5386-0733-6; 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 1940-1946; <a href="https://doi.org/10.1109/CVPRW.2017.243">10.1109/CVPRW.2017.243</a></li>
<li>Shi, Yang and Furlanello, Tommaso, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190402-104101850">Compact Tensor Pooling for Visual Question Answering</a>; <a href="https://doi.org/10.48550/arXiv.1706.06706">10.48550/arXiv.1706.06706</a></li>
<li>Azizzadenesheli, Kamyar and Lazaric, Alessandro, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085721979">Experimental results: Reinforcement Learning of POMDPs using Spectral Methods</a>; ISBN 9781510838819; 30th Annual Conference on Neural Information Processing Systems 2016 : Barcelona, Spain, 5-10 December 2016; <a href="https://doi.org/10.48550/arXiv.1705.02553">10.48550/arXiv.1705.02553</a></li>
<li>Agarwal, Alekh and Anandkumar, Animashree, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-111802806">A Clustering Approach to Learning Sparsely Used Overcomplete Dictionaries</a>; IEEE Transactions on Information Theory; Vol. 63; No. 1; 575-592; <a href="https://doi.org/10.1109/TIT.2016.2614684">10.1109/TIT.2016.2614684</a></li>
<li>Anandkumar, Animashree and Ge, Rong, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-110910164">Analyzing Tensor Power Method Dynamics in Overcomplete Regime</a>; Journal of Machine Learning Research; Vol. 18; No. 22; 1-40; <a href="https://doi.org/10.48550/arXiv.1411.1488">10.48550/arXiv.1411.1488</a></li>
<li>Agarwal, Alekh and Anandkumar, Animashree, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-090108498">Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization</a>; SIAM Journal of Optimization; Vol. 26; No. 4; 2775-2799; <a href="https://doi.org/10.1137/140979861">10.1137/140979861</a></li>
<li>Wang, Yining and Anandkumar, Animashree (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123322786">Online and Differentially-Private Tensor Decomposition</a>; ISBN 9781510838819; Neural Information Processing Systems 2016; Art. No. 6498; <a href="https://doi.org/10.48550/arXiv.1606.06237">10.48550/arXiv.1606.06237</a></li>
<li>Shi, Yang and Niranjan, U. N., el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-112945692">Tensor Contractions with Extended BLAS Kernels on CPU and GPU</a>; ISBN 978-1-5090-5411-4; 2016 IEEE 23rd International Conference on High Performance Computing; 193-202; <a href="https://doi.org/10.1109/HiPC.2016.031">10.1109/HiPC.2016.031</a></li>
<li>Azizzadenesheli, Kamyar and Lazaric, Alessandro, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085718507">Reinforcement Learning in Rich-Observation MDPs using Spectral Methods</a>; <a href="https://doi.org/10.48550/arXiv.1611.03907v4">10.48550/arXiv.1611.03907v4</a></li>
<li>Gitter, Anthony and Huang, Furong, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123329660">Unsupervised learning of transcriptional regulatory networks via latent tree graphical models</a>; <a href="https://doi.org/10.48550/arXiv.1609.06335">10.48550/arXiv.1609.06335</a></li>
<li>Azizzadenesheli, Kamyar and Lazaric, Alessandro, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123310700">Reinforcement Learning of POMDPs using Spectral Methods</a>; Proceedings of Machine Learning Research; Vol. 49; 193-256; <a href="https://doi.org/10.48550/arXiv.1602.07764">10.48550/arXiv.1602.07764</a></li>
<li>Azizzadenesheli, Kamyar and Lazaric, Alessandro, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123326217">Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies</a>; Proceedings of Machine Learning Research; Vol. 49; 1639-1642; <a href="https://doi.org/10.48550/arXiv.1608.04996">10.48550/arXiv.1608.04996</a></li>
<li>Arabshahi, Forough and Anandkumar, Animashree (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123319347">Spectral Methods for Correlated Topic Models</a>; <a href="https://doi.org/10.48550/arXiv.1605.09080">10.48550/arXiv.1605.09080</a></li>
<li>Sedghi, Hanie and Anandkumar, Anima (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123315920">Training Input-Output Recurrent Neural Networks through Spectral Methods</a>; <a href="https://doi.org/10.48550/arXiv.1603.00954">10.48550/arXiv.1603.00954</a></li>
<li>Anandkumar, Anima and Ge, Rong (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123307245">Efficient approaches for escaping higher order saddle points in non-convex optimization</a>; <a href="https://doi.org/10.48550/arXiv.1602.05908">10.48550/arXiv.1602.05908</a></li>
<li>Wang, Yining and Tung, Hsiao-Yu, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123256793">Fast and Guaranteed Tensor Decomposition via Sketching</a>; <a href="https://doi.org/10.48550/arXiv.1506.04448">10.48550/arXiv.1506.04448</a></li>
<li>Anandkumar, Animashree and Hsu, Daniel, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-144026647">When Are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity</a>; Journal of Machine Learning Research; Vol. 16; 2643-2694; <a href="https://doi.org/10.48550/arXiv.1308.2853">10.48550/arXiv.1308.2853</a></li>
<li>Huang, Furong and Niranjan, U. N., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-111140656">Online Tensor Methods for Learning Latent Variable Models</a>; Journal of Machine Learning Research; Vol. 16; 2797-2835; <a href="https://doi.org/10.48550/arXiv.1309.0787">10.48550/arXiv.1309.0787</a></li>
<li>Arabshahi, Forough and Huang, Furong, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-083449769">Are You Going to the Party: Depends, Who Else is Coming?: [Learning Hidden Group Dynamics via Conditional Latent Tree Models]</a>; ISBN 978-1-4673-9504-5; 2015 IEEE International Conference on Data Mining; 697-702; <a href="https://doi.org/10.1109/ICDM.2015.146">10.1109/ICDM.2015.146</a></li>
<li>Anandkumar, Animashree and Ge, Rong, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-143816175">Tensor Decompositions for Learning Latent Variable Models (A Survey for ALT)</a>; ISBN 978-3-319-24485-3; Algorithmic Learning Theory; 19-38; <a href="https://doi.org/10.1007/978-3-319-24486-0_2">10.1007/978-3-319-24486-0_2</a></li>
<li>Anandkumar, Animashree and Jain, Prateek, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123303824">Tensor vs Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations</a>; <a href="https://doi.org/10.48550/arXiv.1510.04747">10.48550/arXiv.1510.04747</a></li>
<li>Janzamin, Majid and Sedghi, Hanie, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123300368">Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods</a>; <a href="https://doi.org/10.48550/arXiv.1506.08473">10.48550/arXiv.1506.08473</a></li>
<li>Huang, Furong and Anandkumar, Animashree (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123253238">Convolutional Dictionary Learning through Tensor Factorization</a>; <a href="https://doi.org/10.48550/arXiv.1506.03509">10.48550/arXiv.1506.03509</a></li>
<li>Nimmagadda, Tejaswi and Anandkumar, Anima (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-162932108">Multi-Object Classification and Unsupervised Scene Understanding Using Deep Learning Features and Latent Tree Probabilistic Models</a>; <a href="https://doi.org/10.48550/arXiv.1505.00308">10.48550/arXiv.1505.00308</a></li>
<li>Anandkumar, Animashree and Foster, Dean P., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-142816744">A Spectral Algorithm for Latent Dirichlet Allocation</a>; Algorithmica; Vol. 72; No. 1; 193-214; <a href="https://doi.org/10.1007/s00453-014-9909-1">10.1007/s00453-014-9909-1</a></li>
<li>Janzamin, Majid and Sedghi, Hanie, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-162925219">Score Function Features for Discriminative Learning</a>; <a href="https://doi.org/10.48550/arXiv.1412.6514">10.48550/arXiv.1412.6514</a></li>
<li>Anandkumar, Anima and Sedghi, Hanie (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-162928669">Learning Mixed Membership Community Models in Social Tagging Networks through Tensor Methods</a>; <a href="https://doi.org/10.48550/arXiv.1503.04567">10.48550/arXiv.1503.04567</a></li>
<li>Sedghi, Hanie and Anandkumar, Anima (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190402-163306528">Provable Methods for Training Neural Networks with Sparse Connectivity</a>; <a href="https://doi.org/10.48550/arXiv.1412.2693">10.48550/arXiv.1412.2693</a></li>
<li>Janzamin, Majid and Sedghi, Hanie, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-162918161">Score Function Features for Discriminative Learning: Matrix and Tensor Framework</a>; <a href="https://doi.org/10.48550/arXiv.1412.2863">10.48550/arXiv.1412.2863</a></li>
<li>Sedghi, Hanie and Janzamin, Majid, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-162921773">Provable Tensor Methods for Learning Mixtures of Generalized Linear Models</a>; Proceedings of Machine Learning Research; Vol. 51; 1223-1231; <a href="https://doi.org/10.48550/arXiv.1412.3046">10.48550/arXiv.1412.3046</a></li>
<li>Sedghi, Hanie and Anandkumar, Anima (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-162914714">Provable Methods for Training Neural Networks with Sparse Connectivity</a>; <a href="https://doi.org/10.48550/arXiv.1412.2693">10.48550/arXiv.1412.2693</a></li>
<li>Sedghi, Hanie and Anandkumar, Anima, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-215036029">Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Matrix Decomposition</a>; ISBN 9781510800410; Advances in neural information processing systems 27 : 28th Annual Conference on Neural Information Processing Systems 2014; 1-9</li>
<li>Netrapalli, Praneeth and Niranjan, U N, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-220846768">Provable Non-convex Robust PCA</a>; ISBN 9781510800410; Advances in neural information processing systems 27 : 28th Annual Conference on Neural Information Processing Systems 2014; 1-9</li>
<li>Netrapalli, Praneeth and Niranjan, U N, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-220922210">Non-convex Robust PCA</a>; <a href="https://doi.org/10.48550/arXiv.1410.7660">10.48550/arXiv.1410.7660</a></li>
<li>Anandkumar, Animashree and Ge, Rong, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-134735763">Tensor Decompositions for Learning Latent Variable Models</a>; Journal of Machine Learning Research; Vol. 15; 2773-2832; <a href="https://doi.org/10.48550/arXiv.1210.7559">10.48550/arXiv.1210.7559</a></li>
<li>Anandkumar, Animashree and Ge, Rong, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-093022023">A Tensor Approach to Learning Mixed Membership Community Models</a>; Journal of Machine Learning Research; Vol. 15; 2239-2312; <a href="https://doi.org/10.48550/arXiv.1302.2684">10.48550/arXiv.1302.2684</a></li>
<li>Sattari, Pegah and Kurant, Maciej, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-101553300">Active Learning of Multiple Source Multiple Destination Topologies</a>; IEEE Transactions on Signal Processing; Vol. 62; No. 8; 1926-1937; <a href="https://doi.org/10.1109/TSP.2014.2304431">10.1109/TSP.2014.2304431</a></li>
<li>Janzamin, Majid and Anandkumar, Animashree (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-142820777">High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models</a>; Journal of Machine Learning Research; Vol. 15; 1549-1591; <a href="https://doi.org/10.48550/arXiv.1211.0919">10.48550/arXiv.1211.0919</a></li>
<li>Sedghi, Hanie and Anandkumar, Anima, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-215104749">Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Noisy Matrix Decomposition</a>; <a href="https://doi.org/10.48550/arXiv.1402.5131">10.48550/arXiv.1402.5131</a></li>
<li>Anandkumar, Animashree and He, Ting, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-142253537">Seeing through black boxes: Tracking transactions through queues under monitoring resource constraints</a>; Performance Evaluation; Vol. 70; No. 12; 1090-1110; <a href="https://doi.org/10.1016/j.peva.2013.08.003">10.1016/j.peva.2013.08.003</a></li>
<li>Anandkumar, Animashree and Hassidim, Avinatan, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-132342501">Topology discovery of sparse random graphs with few participants</a>; Random Structures &amp; Algorithms; Vol. 43; No. 1; 16-48; <a href="https://doi.org/10.1002/rsa.20420">10.1002/rsa.20420</a></li>
<li>Anandkumar, Amod J. G. and Anandkumar, Animashree, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-100945197">Robust noncooperative rate-maximization game for MIMO Gaussian interference channels under bounded channel uncertainty</a>; ISBN 978-1-4799-0356-6; 2013 IEEE International Conference on Acoustics, Speech and Signal Processing; 4819-4823; <a href="https://doi.org/10.1109/ICASSP.2013.6638576">10.1109/ICASSP.2013.6638576</a></li>
<li>Huang, Furong and Anandkumar, Animashree (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-100358224">FCD: Fast-concurrent-distributed load balancing under switching costs and imperfect observations</a>; ISBN 978-1-4673-5944-3; 2013 Proceedings IEEE INFOCOM; 1896-1904; <a href="https://doi.org/10.1109/INFCOM.2013.6566989">10.1109/INFCOM.2013.6566989</a></li>
<li>Sattari, Pegah and Kurant, Maciej, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-095252031">Active learning of multiple source multiple destination topologies</a>; ISBN 978-1-4673-5237-6; 47th Annual Conference on Information Sciences and Systems; 1-6; <a href="https://doi.org/10.1109/CISS.2013.6552253">10.1109/CISS.2013.6552253</a></li>
<li>Anandkumar, Animashree and Valluvan, Ragupathyraj (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-104250746">Learning loopy graphical models with latent variables: Efficient methods and guarantees</a>; Annals of Statistics; Vol. 41; No. 2; 401-435; <a href="https://doi.org/10.48550/arXiv.1203.3887">10.48550/arXiv.1203.3887</a></li>
<li>Anandkumar, Anima and Valluvan, Ragupathyraj (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-212818169">Latent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs</a>; ISBN 9781627480031; Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012; 1-9</li>
<li>Anandkumar, Anima and Foster, Dean P., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-213700256">A Spectral Algorithm for Latent Dirichlet Allocation</a></li>
<li>Anandkumar, Animashree and Tan, Vincent Y. F., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-091743601">High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion</a>; Journal of Machine Learning Research; Vol. 13; 2293-2337; <a href="https://doi.org/10.48550/arXiv.1107.1270">10.48550/arXiv.1107.1270</a></li>
<li>Liu, Ying and Chandrasekaran, Venkat, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120820-094221711">Feedback Message Passing for Inference in Gaussian Graphical Models</a>; IEEE Transactions on Signal Processing; Vol. 60; No. 8; 4135-4150; <a href="https://doi.org/10.1109/TSP.2012.2195656">10.1109/TSP.2012.2195656</a></li>
<li>Anandkumar, Animashree and Tan, Vincent Y. F., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-101515951">High-dimensional structure estimation in Ising models: Local separation criterion</a>; Annals of Statistics; Vol. 40; No. 3; 1346-1375; <a href="https://doi.org/10.48550/arXiv.1107.1736">10.48550/arXiv.1107.1736</a></li>
<li>Anandkumar, Anima and Tan, Voncent Y. F., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-193410312">High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions</a>; ISBN 9781618395993; Advances in neural information processing systems 24 : 25th Annual Conference on Neural Information Processing Systems 2011, December 12-15, 2011, Granada, Spain; 1-9</li>
<li>Anandkumar, Animashree and Hsu, Daniel, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-212034677">Learning Mixtures of Tree Graphical Models</a>; ISBN 9781618395993; Advances in neural information processing systems 24 : 25th Annual Conference on Neural Information Processing Systems 2011; 1-9</li>
<li>Anandkumar, Animashree and Chaudhuri, Kamalika, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-190922619">Spectral Methods for Learning Multivariate Latent Tree Structure</a>; ISBN 9781618395993; Advances in neural information processing systems 24 : 25th Annual Conference on Neural Information Processing Systems 2011, December 12-15, 2011, Granada, Spain; 1-9</li>
<li>Anandkumar, Amod J. G. and Anandkumar, Animashree, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-094601829">Robust Rate Maximization Game Under Bounded Channel Uncertainty</a>; IEEE Transactions on Vehicular Technology; Vol. 60; No. 9; 4471-4486; <a href="https://doi.org/10.1109/TVT.2011.2171011">10.1109/TVT.2011.2171011</a></li>
<li>Anandkumar, Animashree and Chaudhuri, Kamalika, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221222-191039686">Spectral Methods for Learning Multivariate Latent Tree Structure</a>; <a href="https://doi.org/10.48550/arXiv.1107.1283">10.48550/arXiv.1107.1283</a></li>
<li>Khajehnejad, M. Amin and Yoo, Juhwan, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120406-072754339">Summary Based Structures with Improved Sublinear Recovery for Compressed Sensing</a>; ISBN 978-1-4577-0596-0; 2011 IEEE International Symposium on Information Theory Proceedings; 1427-1431; <a href="https://doi.org/10.1109/ISIT.2011.6033775">10.1109/ISIT.2011.6033775</a></li>
<li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-144736867">Learning High-Dimensional Markov Forest Distributions: Analysis of Error Rates</a>; Journal of Machine Learning Research; Vol. 12; 1617-1653; <a href="https://doi.org/10.48550/arXiv.1005.0766">10.48550/arXiv.1005.0766</a></li>
<li>Choi, Myung Jin and Tan, Vincent Y. F., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-100701408">Learning Latent Tree Graphical Models</a>; Journal of Machine Learning Research; Vol. 12; 1771-1812; <a href="https://doi.org/10.48550/arXiv.1009.2722">10.48550/arXiv.1009.2722</a></li>
<li>Balister, Paul and Bollobás, Béla, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-092119382">Energy-latency tradeoff for in-network function computation in random networks</a>; ISBN 978-1-4244-9919-9; 2011 Proceedings IEEE INFOCOM; 1575-1583; <a href="https://doi.org/10.1109/INFCOM.2011.5934949">10.1109/INFCOM.2011.5934949</a></li>
<li>Anandkumar, Animashree and Michael, Nithin, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-133040888">Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret</a>; IEEE Journal on Selected Areas in Communications; Vol. 29; No. 4; 731-745; <a href="https://doi.org/10.1109/JSAC.2011.110406">10.1109/JSAC.2011.110406</a></li>
<li>He, Ting and Anandkumar, Animashree, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-091212425">Index-based sampling policies for tracking dynamic networks under sampling constraints</a>; ISBN 978-1-4244-9919-9; 2011 Proceedings IEEE INFOCOM; 1233-1241; <a href="https://doi.org/10.1109/INFCOM.2011.5934904">10.1109/INFCOM.2011.5934904</a></li>
<li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-092634649">A Large-Deviation Analysis of the Maximum-Likelihood Learning of Markov Tree Structures</a>; IEEE Transactions on Information Theory; Vol. 57; No. 3; 1714-1735; <a href="https://doi.org/10.1109/TIT.2011.2104513">10.1109/TIT.2011.2104513</a></li>
<li>Anandkumar, Amod J. G. and Anandkumar, Animashree, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-134024046">Efficiency of rate-maximization game under bounded channel uncertainty</a>; ISBN 978-1-4244-9722-5; 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers; 482-486; <a href="https://doi.org/10.1109/ACSSC.2010.5757605">10.1109/ACSSC.2010.5757605</a></li>
<li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-085233225">Error exponents for composite hypothesis testing of Markov forest distributions</a>; ISBN 978-1-4244-7890-3; 2010 IEEE International Symposium on Information Theory; 1613-1617; <a href="https://doi.org/10.1109/ISIT.2010.5513399">10.1109/ISIT.2010.5513399</a></li>
<li>Anandkumar, Animashree and Yukich, Joseph, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-084526901">Limit laws for random spatial graphical models</a>; ISBN 978-1-4244-7890-3; 2010 IEEE International Symposium on Information Theory; 1728-1732; <a href="https://doi.org/10.1109/ISIT.2010.5513254">10.1109/ISIT.2010.5513254</a></li>
<li>Liu, Ying and Chandrasekaran, Venkat, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20121004-153356182">Feedback Message Passing for Inference in Gaussian Graphical Models</a>; ISBN 978-1-4244-6960-4; 2010 IEEE International Symposium on Information Theory Proceedings (ISIT); 1683-1687; <a href="https://doi.org/10.1109/ISIT.2010.5513321">10.1109/ISIT.2010.5513321</a></li>
<li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-082655078">Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures</a>; IEEE Transactions on Signal Processing; Vol. 58; No. 5; 2701-2714; <a href="https://doi.org/10.1109/TSP.2010.2042478">10.1109/TSP.2010.2042478</a></li>
<li>Anandkumar, Amod J. G. and Anandkumar, Animashree, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-084018628">Robust rate-maximization game under bounded channel uncertainty</a>; ISBN 978-1-4244-4295-9; 2010 IEEE International Conference on Acoustics, Speech and Signal Processing; 3158-3161; <a href="https://doi.org/10.1109/ICASSP.2010.5496066">10.1109/ICASSP.2010.5496066</a></li>
<li>Anandkumar, Animashree and Michael, Nithin, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-083321456">Opportunistic Spectrum Access with Multiple Users: Learning under Competition</a>; ISBN 978-1-4244-5836-3; 2010 Proceedings IEEE INFOCOM; 1-9; <a href="https://doi.org/10.1109/INFCOM.2010.5462144">10.1109/INFCOM.2010.5462144</a></li>
<li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170921-160724769">How do the structure and the parameters of Gaussian tree models affect structure learning?</a>; ISBN 978-1-4244-5870-7; 47th Annual Allerton Conference on Communication, Control, and Computing; 684-691; <a href="https://doi.org/10.1109/ALLERTON.2009.5394929">10.1109/ALLERTON.2009.5394929</a></li>
<li>Anandkumar, Animashree and Yukich, Joseph E., el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170921-155701400">Energy scaling laws for distributed inference in random fusion networks</a>; IEEE Journal on Selected Areas in Communications; Vol. 27; No. 7; 1203-1217; <a href="https://doi.org/10.1109/JSAC.2009.090916">10.1109/JSAC.2009.090916</a></li>
<li>Anandkumar, Animashree and Tong, Lang, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170921-154140237">Detection error exponent for spatially dependent samples in random networks</a>; ISBN 978-1-4244-4312-3; 2009 IEEE International Symposium on Information Theory; 2882-2886; <a href="https://doi.org/10.1109/ISIT.2009.5205358">10.1109/ISIT.2009.5205358</a></li>
<li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170921-154915776">A large-deviation analysis for the maximum likelihood learning of tree structures</a>; ISBN 978-1-4244-4312-3; 2009 IEEE International Symposium on Information Theory; 1140-1144; <a href="https://doi.org/10.1109/ISIT.2009.5206012">10.1109/ISIT.2009.5206012</a></li>
<li>Anandkumar, Animashree and Wang, Meng, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170921-153522501">Prize-Collecting Data Fusion for Cost-Performance Tradeoff in Distributed Inference</a>; ISBN 978-1-4244-3512-8; 28th IEEE Conference on Computer Communications; 2150-2158; <a href="https://doi.org/10.1109/INFCOM.2009.5062139">10.1109/INFCOM.2009.5062139</a></li>
<li>Anandkumar, Animashree and Tong, Lang, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-162015185">Detection of Gauss-Markov Random Fields With Nearest-Neighbor Dependency</a>; IEEE Transactions on Information Theory; Vol. 55; No. 2; 816-827; <a href="https://doi.org/10.1109/TIT.2008.2009855">10.1109/TIT.2008.2009855</a></li>
<li>Anandkumar, Animashree and Tong, Lang, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-160524319">Optimal Node Density for Detection in Energy-Constrained Random Networks</a>; IEEE Transactions on Signal Processing; Vol. 56; No. 10; 5232-5245; <a href="https://doi.org/10.1109/TSP.2008.928514">10.1109/TSP.2008.928514</a></li>
<li>Ezovski, G. Matthew and Anandkumar, Animashree, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170810-112107197">Min-min times in peer-to-peer file sharing networks</a>; ISBN 978-1-4244-2925-7; 46th Annual Allerton Conference on Communication, Control, and Computing; 1487-1494; <a href="https://doi.org/10.1109/ALLERTON.2008.4797738">10.1109/ALLERTON.2008.4797738</a></li>
<li>Anandkumar, Animashree and Tong, Lang, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-155855969">Distributed Estimation Via Random Access</a>; IEEE Transactions on Information Theory; Vol. 54; No. 7; 3175-3181; <a href="https://doi.org/10.1109/TIT.2008.924652">10.1109/TIT.2008.924652</a></li>
<li>Anandkumar, Animashree and Bisdikian, Chatschik, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-141103230">Tracking in a spaghetti bowl: monitoring transactions using footprints</a>; ISBN 978-1-60558-005-0; Proceedings of the 2008 ACM SIGMETRICS international conference on measurement and modeling of computer systems; 133-144; <a href="https://doi.org/10.1145/1375457.1375473">10.1145/1375457.1375473</a></li>
<li>Anandkumar, Animashree and Tong, Lang, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-154142664">Minimum Cost Data Aggregation with Localized Processing for Statistical Inference</a>; ISBN 978-1-4244-2025-4; 27th IEEE Conference on Computer Communications; 1454-1462; <a href="https://doi.org/10.1109/INFOCOM.2008.129">10.1109/INFOCOM.2008.129</a></li>
<li>Sengupta, Bikram and Banerjee, Nilanjan, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-161153053">Non-intrusive transaction monitoring using system logs</a>; ISBN 978-1-4244-2065-0; 2008 IEEE Network Operations and Management Symposium; 879-882; <a href="https://doi.org/10.1109/NOMS.2008.4575237">10.1109/NOMS.2008.4575237</a></li>
<li>Anandkumar, Animashree and Tong, Lang (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-153723886">Type-Based Random Access for Distributed Detection Over Multiaccess Fading Channels</a>; IEEE Transactions on Signal Processing; Vol. 55; No. 10; 5032-5043; <a href="https://doi.org/10.1109/TSP.2007.896302">10.1109/TSP.2007.896302</a></li>
<li>Anandkumar, Animashree and Tong, Lang, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-152542556">Detection of Gauss-Markov Random Field on Nearest-Neighbor Graph</a>; ISBN 1-4244-0727-3; 2007 IEEE International Conference on Acoustics, Speech and Signal Processing; 829-832; <a href="https://doi.org/10.1109/ICASSP.2007.366808">10.1109/ICASSP.2007.366808</a></li>
<li>Anandkumar, Animashree and Tong, Lang, el al. (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-153229570">Energy Efficient Routing for Statistical Inference of Markov Random Fields</a>; ISBN 9781424410361; 2007 41st annual conference on information sciences and systems : Baltimore, MD, 14-16 March, 2007.; 643-648; <a href="https://doi.org/10.1109/CISS.2007.4298386">10.1109/CISS.2007.4298386</a></li>
<li>Anandkumar, Animashree and Tong, Lang (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-144901114">A Large Deviation Analysis of Detection Over Multi-Access Channels with Random Number of Sensors</a>; ISBN 1-4244-0469-X; 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings; 1097-1100; <a href="https://doi.org/10.1109/ICASSP.2006.1661164">10.1109/ICASSP.2006.1661164</a></li>
<li>Anandkumar, Animashree and Tong, Lang (2006) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-145744615">Distributed Statistical Inference using Type Based Random Access over Multi-access Fading Channels</a>; ISBN 1-4244-0349-9; 2006 40th Annual Conference on Information Sciences and Systems; 38-43; <a href="https://doi.org/10.1109/CISS.2006.286427">10.1109/CISS.2006.286427</a></li>
</ul>