<h1>Anandkumar, Animashree</h1> <h2>Article from <a href="https://authors.library.caltech.edu">CaltechAUTHORS</a></h2> <ul> <li>Lale, Sahin and Renn, Peter I., el al. (2024) <a href="https://authors.library.caltech.edu/records/f8vmz-3pw50">FALCON: Fourier Adaptive Learning and Control for Disturbance Rejection Under Extreme Turbulence</a>; npj Robotics; Vol. 2; No. 1; 6; <a href="https://doi.org/10.1038/s44182-024-00013-0">10.1038/s44182-024-00013-0</a></li> <li>McClain Gomez, Abigail and Patti, Taylor L., el al. (2024) <a href="https://authors.library.caltech.edu/records/emsfz-n3k73">Near-term distributed quantum computation using mean-field corrections and auxiliary qubits</a>; Quantum Science and Technology; Vol. 9; No. 3; 035022; <a href="https://doi.org/10.1088/2058-9565/ad3f45">10.1088/2058-9565/ad3f45</a></li> <li>Gopakumar, Vignesh and Pamela, Stanislas, el al. (2024) <a href="https://authors.library.caltech.edu/records/sr4k2-nhn30">Plasma surrogate modelling using Fourier neural operators</a>; Nuclear Fusion; Vol. 64; No. 5; 056025; <a href="https://doi.org/10.1088/1741-4326/ad313a">10.1088/1741-4326/ad313a</a></li> <li>Azizzadenesheli, Kamyar and Kovachki, Nikola, el al. (2024) <a href="https://authors.library.caltech.edu/records/2ttpy-ejy25">Neural operators for accelerating scientific simulations and design</a>; Nature Reviews Physics; <a href="https://doi.org/10.1038/s42254-024-00712-5">10.1038/s42254-024-00712-5</a></li> <li>Li, Zongyi and Zheng, Hongkai, el al. (2024) <a href="https://authors.library.caltech.edu/records/06m4r-8jf10">Physics-Informed Neural Operator for Learning Partial Differential Equations</a>; ACM / IMS Journal of Data Science; <a href="https://doi.org/10.1145/3648506">10.1145/3648506</a></li> <li>Qiao, Zhuoran and Nie, Weili, el al. (2024) <a href="https://authors.library.caltech.edu/records/rhxkg-vj009">State-specific protein–ligand complex structure prediction with a multiscale deep generative model</a>; Nature Machine Intelligence; <a href="https://doi.org/10.1038/s42256-024-00792-z">10.1038/s42256-024-00792-z</a></li> <li>Zhou, Tingtao and Wan, Xuan, el al. (2024) <a href="https://authors.library.caltech.edu/records/ch9jq-hc145">AI-aided geometric design of anti-infection catheters</a>; Science Advances; Vol. 10; No. 1; eadj1741; PMCID PMC10776022; <a href="https://doi.org/10.1126/sciadv.adj1741">10.1126/sciadv.adj1741</a></li> <li>Zheng, Zhiling and Alawadhi, Ali H., el al. (2023) <a href="https://authors.library.caltech.edu/records/ewmpw-3r017">Shaping the Water-Harvesting Behavior of Metal–Organic Frameworks Aided by Fine-Tuned GPT Models</a>; Journal of the American Chemical Society; Vol. 145; No. 51; 28284-28295; <a href="https://doi.org/10.1021/jacs.3c12086">10.1021/jacs.3c12086</a></li> <li>Feng, Jie and Shi, Yuanyuan, el al. (2023) <a href="https://authors.library.caltech.edu/records/v26v8-j6q25">Stability Constrained Reinforcement Learning for Decentralized Real-Time Voltage Control</a>; IEEE Transactions on Control of Network Systems; 1-12; <a href="https://doi.org/10.1109/tcns.2023.3338240">10.1109/tcns.2023.3338240</a></li> <li>Liu, Shengchao and Nie, Weili, el al. (2023) <a href="https://authors.library.caltech.edu/records/wygt1-n8w76">Multi-modal molecule structure–text model for text-based retrieval and editing</a>; Nature Machine Intelligence; Vol. 5; No. 12; 1447-1457; <a href="https://doi.org/10.1038/s42256-023-00759-6">10.1038/s42256-023-00759-6</a></li> <li>Kiyasseh, Dani and Ma, Runzhuo, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230420-711199500.6">A vision transformer for decoding surgeon activity from surgical videos</a>; Nature Biomedical Engineering; Vol. 7; No. 6; 780-796; PMCID PMC10307635; <a href="https://doi.org/10.1038/s41551-023-01010-8">10.1038/s41551-023-01010-8</a></li> <li>Kiyasseh, Dani and Laca, Jasper, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230420-614686900.13">Human visual explanations mitigate bias in AI-based assessment of surgeon skills</a>; npj Digital Medicine; Vol. 6; Art. No. 54; PMCID PMC10063676; <a href="https://doi.org/10.1038/s41746-023-00766-2">10.1038/s41746-023-00766-2</a></li> <li>Inouye, Daniel A. and Ma, Runzhuo, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220930-482429300.5">Assessing the efficacy of dissection gestures in robotic surgery</a>; Journal of Robotic Surgery; Vol. 17; No. 2; 597-603; <a href="https://doi.org/10.1007/s11701-022-01458-x">10.1007/s11701-022-01458-x</a></li> <li>Wen, Gege and Li, Zongyi, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230404-448520900.5">Real-time high-resolution CO₂ geological storage prediction using nested Fourier neural operators</a>; Energy and Environmental Science; Vol. 16; No. 4; 1732-1741; <a href="https://doi.org/10.1039/d2ee04204e">10.1039/d2ee04204e</a></li> <li>Kiyasseh, Dani and Laca, Jasper, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230502-987371300.6">A multi-institutional study using artificial intelligence to provide reliable and fair feedback to surgeons</a>; Communications Medicine; Vol. 3; Art. No. 42; PMCID PMC10063640; <a href="https://doi.org/10.1038/s43856-023-00263-3">10.1038/s43856-023-00263-3</a></li> <li>Hung, Andrew J. and Bao, Richard, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221110-430801400.16">Capturing fine-grained details for video-based automation of suturing skills assessment</a>; International Journal of Computer Assisted Radiology and Surgery; Vol. 18; No. 3; 545-552; PMCID PMC9975072; <a href="https://doi.org/10.1007/s11548-022-02778-x">10.1007/s11548-022-02778-x</a></li> <li>Dommer, Abigail and Casalino, Lorenzo, el al. (2023) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221017-15547800.39">#COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol</a>; International Journal of High Performance Computing Applications; Vol. 37; No. 1; 28-44; PMCID PMC9527558; <a href="https://doi.org/10.1177/10943420221128233">10.1177/10943420221128233</a></li> <li>Ma, Runzhuo and Ramaswamy, Ashwin, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20230209-988069100.14">Surgical gestures as a method to quantify surgical performance and predict patient outcomes</a>; npj Digital Medicine; Vol. 5; Art. No. 187; PMCID PMC9780308; <a href="https://doi.org/10.1038/s41746-022-00738-y">10.1038/s41746-022-00738-y</a></li> <li>Laca, Jasper A. and Kocielnik, Rafal, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221122-564647900.20">Using Real-time Feedback To Improve Surgical Performance on a Robotic Tissue Dissection Task</a>; European Urology Open Science; Vol. 46; 15-21; PMCID PMC9732447; <a href="https://doi.org/10.1016/j.euros.2022.09.015">10.1016/j.euros.2022.09.015</a></li> <li>Zhao, Jiawei and Dai, Steve, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221202-906480600.2">LNS-Madam: Low-Precision Training in Logarithmic Number System using Multiplicative Weight Update</a>; IEEE Transactions on Computers; Vol. 71; No. 12; 3179-3190; <a href="https://doi.org/10.1109/tc.2022.3202747">10.1109/tc.2022.3202747</a></li> <li>Trifan, Anda and Gorgun, Defne, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20221011-459145000.39">Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action</a>; International Journal of High Performance Computing Applications; <a href="https://doi.org/10.1177/10943420221113513">10.1177/10943420221113513</a></li> <li>Hoeller, David and Rudin, Nikita, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224603901">Neural Scene Representation for Locomotion on Structured Terrain</a>; IEEE Robotics and Automation Letters; Vol. 7; No. 4; 8667-8674; <a href="https://doi.org/10.1109/LRA.2022.3184779">10.1109/LRA.2022.3184779</a></li> <li>Pangal, Dhiraj J. and Kugener, Guillaume, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220112-7446100">Use of surgical video–based automated performance metrics to predict blood loss and success of simulated vascular injury control in neurosurgery: a pilot study</a>; Journal of Neurosurgery; Vol. 137; No. 3; 840-849; <a href="https://doi.org/10.3171/2021.10.jns211064">10.3171/2021.10.jns211064</a></li> <li>Markarian, Nicholas and Kugener, Guillaume, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220908-194215690">Validation of Machine Learning-Based Automated Surgical Instrument Annotation Using Publicly Available Intraoperative Video</a>; Operative Neurosurgery; Vol. 23; No. 3; 235-240; <a href="https://doi.org/10.1227/ons.0000000000000274">10.1227/ons.0000000000000274</a></li> <li>Patti, Taylor L. and Kossaifi, Jean, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220909-232706000">Variational quantum optimization with multibasis encodings</a>; Physical Review Research; Vol. 4; No. 3; Art. No. 4.033142; <a href="https://doi.org/10.1103/physrevresearch.4.033142">10.1103/physrevresearch.4.033142</a></li> <li>Qiao, Zhuoran and Christensen, Anders S., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203900979">Informing geometric deep learning with electronic interactions to accelerate quantum chemistry</a>; Proceedings of the National Academy of Sciences; Vol. 119; No. 31; Art. No. e2205221119; PMCID PMC9351474; <a href="https://doi.org/10.1073/pnas.2205221119">10.1073/pnas.2205221119</a></li> <li>Xu, Pan and Zheng, Hongkai, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212437915">Langevin Monte Carlo for Contextual Bandits</a>; Proceedings of Machine Learning Research; Vol. 162; 24830-24850; <a href="https://doi.org/10.48550/arXiv.arXiv.2206.11254">10.48550/arXiv.arXiv.2206.11254</a></li> <li>Kargin, Taylan and Lale, Sahin, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212445251">Thompson Sampling Achieves Õ(√T) Regret in Linear Quadratic Control</a>; Proceedings of Machine Learning Research; Vol. 178; 3235-3284; <a href="https://doi.org/10.48550/arXiv.2206.08520">10.48550/arXiv.2206.08520</a></li> <li>Kugener, Guillaume and Zhu, Yichao, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220413-607067100">Deep Neural Networks Can Accurately Detect Blood Loss and Hemorrhage Control Task Success From Video</a>; Neurosurgery; Vol. 90; No. 6; 823-829; <a href="https://doi.org/10.1227/neu.0000000000001906">10.1227/neu.0000000000001906</a></li> <li>Pangal, Dhiraj J. and Kugener, Guillaume, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220124-214564000">Expert surgeons and deep learning models can predict the outcome of surgical hemorrhage from 1 min of video</a>; Scientific Reports; Vol. 12; Art. No. 8137; PMCID PMC9114003; <a href="https://doi.org/10.1038/s41598-022-11549-2">10.1038/s41598-022-11549-2</a></li> <li>Nie, Weili and Guo, Brandon, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220715-174841781">Diffusion Models for Adversarial Purification</a>; Proceedings of Machine Learning Research; Vol. 162; 16805-16827; <a href="https://doi.org/10.48550/arXiv.2205.07460">10.48550/arXiv.2205.07460</a></li> <li>O'Connell, Michael and Shi, Guanya, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220505-792409800">Neural-Fly enables rapid learning for agile flight in strong winds</a>; Science Robotics; Vol. 7; No. 66; Art. No. eabm6597; <a href="https://doi.org/10.1126/scirobotics.abm6597">10.1126/scirobotics.abm6597</a></li> <li>Roberts, Sidney I. and Cen, Steven Y., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220912-920381000">The Relationship Between Technical Skills, Cognitive Workload, and Errors During Robotic Surgical Exercises</a>; Journal of Endourology; Vol. 36; No. 5; 712-720; PMCID PMC9145254; <a href="https://doi.org/10.1089/end.2021.0790">10.1089/end.2021.0790</a></li> <li>Wen, Gege and Li, Zongyi, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220412-15492000">U-FNO—An enhanced Fourier neural operator-based deep-learning model for multiphase flow</a>; Advances in Water Resources; Vol. 163; Art. No. 104180; <a href="https://doi.org/10.1016/j.advwatres.2022.104180">10.1016/j.advwatres.2022.104180</a></li> <li>Zhou, Daquan and Yu, Zhiding, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-212518736">Understanding The Robustness in Vision Transformers</a>; Proceedings of Machine Learning Research; Vol. 162; 27378-27394; <a href="https://doi.org/10.48550/arXiv.2204.12451">10.48550/arXiv.2204.12451</a></li> <li>Kugener, Guillaume and Pangal, Dhiraj J., el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220329-772928599">Utility of the Simulated Outcomes Following Carotid Artery Laceration Video Data Set for Machine Learning Applications</a>; JAMA Network Open; Vol. 5; No. 3; Art. No. e223177; PMCID PMC8938712; <a href="https://doi.org/10.1001/jamanetworkopen.2022.3177">10.1001/jamanetworkopen.2022.3177</a></li> <li>Liu, Burigede and Kovachki, Nikola, el al. (2022) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210225-132721680">A learning-based multiscale method and its application to inelastic impact problems</a>; Journal of the Mechanics and Physics of Solids; Vol. 158; Art. No. 104668; <a href="https://doi.org/10.1016/j.jmps.2021.104668">10.1016/j.jmps.2021.104668</a></li> <li>Christensen, Anders S. and Sirumalla, Sai Krishna, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203931813">OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy</a>; Journal of Chemical Physics; Vol. 155; No. 20; Art. No. 204103; <a href="https://doi.org/10.1063/5.0061990">10.1063/5.0061990</a></li> <li>Lee, Youngwoon and Lim, Joseph J., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220714-224643553">Adversarial Skill Chaining for Long-Horizon Robot Manipulation via Terminal State Regularization</a>; Proceedings of Machine Learning Research; Vol. 164; 406-416; <a href="https://doi.org/10.48550/arXiv.arXiv.2111.07999">10.48550/arXiv.arXiv.2111.07999</a></li> <li>Hung, Andrew J. and Liu, Yan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20211008-183538597">Deep Learning to Automate Technical Skills Assessment in Robotic Surgery</a>; JAMA Surgery; Vol. 156; No. 11; 1059-1060; <a href="https://doi.org/10.1001/jamasurg.2021.3651">10.1001/jamasurg.2021.3651</a></li> <li>Chan, Justin and Pangal, Dhiraj J., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210910-182725636">A systematic review of virtual reality for the assessment of technical skills in neurosurgery</a>; Neurosurgical Focus; Vol. 51; No. 2; Art. No. E15; <a href="https://doi.org/10.3171/2021.5.focus21210">10.3171/2021.5.focus21210</a></li> <li>Fan, Linxi and Wang, Guanzhi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203918113">SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies</a>; Proceedings of Machine Learning Research; Vol. 139; 3088-3099; <a href="https://doi.org/10.48550/arXiv.2106.09678">10.48550/arXiv.2106.09678</a></li> <li>Liu, Bo and Liu, Qiang, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203857558">Coach-Player Multi-agent Reinforcement Learning for Dynamic Team Composition</a>; Proceedings of Machine Learning Research; Vol. 139; 6860-6870; <a href="https://doi.org/10.48550/arXiv.2105.08692">10.48550/arXiv.2105.08692</a></li> <li>Mahajan, Anuj and Samvelyan, Mikayel, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210831-203904421">Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning</a>; Proceedings of Machine Learning Research; Vol. 139; 7301-7312; <a href="https://doi.org/10.48550/arXiv.2106.00136">10.48550/arXiv.2106.00136</a></li> <li>Chang, Nadine and Yu, Zhiding, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210510-134322482">Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection</a>; Proceedings of Machine Learning Research; Vol. 139; 1463-1472; <a href="https://doi.org/10.48550/arXiv.2104.05702">10.48550/arXiv.2104.05702</a></li> <li>Lale, Sahin and Azizzadenesheli, Kamyar, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210727-162630002">Finite-time System Identification and Adaptive Control in Autoregressive Exogenous Systems</a>; Proceedings of Machine Learning Research; Vol. 144; 967-979</li> <li>Qu, Guannan and Shi, Yuanyuan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210510-092451106">Stable Online Control of Linear Time-Varying Systems</a>; Proceedings of Machine Learning Research; Vol. 144; 742-753; <a href="https://doi.org/10.48550/arXiv.2104.14134">10.48550/arXiv.2104.14134</a></li> <li>Yu, Jing and Gehring, Clement, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210727-172214672">Robust Reinforcement Learning: A Constrained Game-theoretic Approach</a>; Proceedings of Machine Learning Research; Vol. 144; 1242-1254</li> <li>Lale, Sahin and Teke, Oguzhan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210225-132728423">Stability and Identification of Random Asynchronous Linear Time-Invariant Systems</a>; Proceedings of Machine Learning Research; Vol. 144; 651-663; <a href="https://doi.org/10.48550/arXiv.2012.04160">10.48550/arXiv.2012.04160</a></li> <li>Luongo, Francisco and Hakim, Ryan, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200928-140721280">Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery</a>; Surgery; Vol. 169; No. 5; 1240-1244; PMCID PMC7994208; <a href="https://doi.org/10.1016/j.surg.2020.08.016">10.1016/j.surg.2020.08.016</a></li> <li>Panagakis, Yannis and Kossaifi, Jean, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210611-152119929">Tensor Methods in Computer Vision and Deep Learning</a>; Proceedings of the IEEE; Vol. 109; No. 5; 863-890; <a href="https://doi.org/10.1109/jproc.2021.3074329">10.1109/jproc.2021.3074329</a></li> <li>Kashinath, K. and Mustafa, M., el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20210223-154127043">Physics-informed machine learning: case studies for weather and climate modelling</a>; Philosophical Transactions A: Mathematical, Physical and Engineering Sciences; Vol. 379; No. 2194; Art. No. 20200093; <a href="https://doi.org/10.1098/rsta.2020.0093">10.1098/rsta.2020.0093</a></li> <li>Zhao, Eric and Liu, Anqi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201110-074357009">Active Learning under Label Shift</a>; Proceedings of Machine Learning Research; Vol. 130; 3412-3420; <a href="https://doi.org/10.48550/arXiv.2007.08479">10.48550/arXiv.2007.08479</a></li> <li>Nakka, Yashwanth Kumar and Liu, Anqi, el al. (2021) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200526-150616242">Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems</a>; IEEE Robotics and Automation Letters; Vol. 6; No. 2; 389-396; <a href="https://doi.org/10.1109/LRA.2020.3044033">10.1109/LRA.2020.3044033</a></li> <li>Chu, Linda C. and Anandkumar, Animashree, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200420-154710784">The Potential Dangers of Artificial Intelligence for Radiology and Radiologists</a>; Journal of the American College of Radiology; Vol. 17; No. 10; 1309-1311; PMCID PMC7164850; <a href="https://doi.org/10.1016/j.jacr.2020.04.010">10.1016/j.jacr.2020.04.010</a></li> <li>Qiao, Zhuoran and Welborn, Matthew, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200818-095759329">OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features</a>; Journal of Chemical Physics; Vol. 153; No. 12; Art. No. 124111; <a href="https://doi.org/10.1063/5.0021955">10.1063/5.0021955</a></li> <li>Ren, Hongyu and Zhu, Yuke, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120151731">OCEAN: Online Task Inference for Compositional Tasks with Context Adaptation</a>; Proceedings of Machine Learning Research; Vol. 124; 1378-1387; <a href="https://doi.org/10.48550/arXiv.2008.07087">10.48550/arXiv.2008.07087</a></li> <li>Kossaifi, Jean and Lipton, Zachary C., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085728859">Tensor Regression Networks</a>; Journal of Machine Learning Research; Vol. 21; 1-21; <a href="https://doi.org/10.48550/arXiv.1707.08308">10.48550/arXiv.1707.08308</a></li> <li>Chen, Wuyang and Yu, Zhiding, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20201106-120205331">Automated Synthetic-to-Real Generalization</a>; Proceedings of Machine Learning Research; Vol. 119; 1746-1756; <a href="https://doi.org/10.48550/arXiv.2007.06965">10.48550/arXiv.2007.06965</a></li> <li>Chen, Beidi and Liu, Weiyang, el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200109-084932688">Angular Visual Hardness</a>; Proceedings of Machine Learning Research; Vol. 119; 1637-1648; <a href="https://doi.org/10.48550/arXiv.1912.02279">10.48550/arXiv.1912.02279</a></li> <li>Ross, Zachary E. and Trugman, Daniel T., el al. (2020) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190905-154247884">Directivity Modes of Earthquake Populations with Unsupervised Learning</a>; Journal of Geophysical Research. Solid Earth; Vol. 125; No. 2; Art. No. e2019JB018299; <a href="https://doi.org/10.1029/2019JB018299">10.1029/2019JB018299</a></li> <li>Janzamin, Majid and Ge, Rong, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200526-130837701">Spectral Learning on Matrices and Tensors</a>; Foundations and Trends in Machine Learning; Vol. 12; No. 5-6; 393-536; <a href="https://doi.org/10.1561/2200000057">10.1561/2200000057</a></li> <li>Huang, Furong and Naresh, Niranjan Uma, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20220107-163918011">Guaranteed Scalable Learning of Latent Tree Models</a>; Proceedings of Machine Learning Research; Vol. 115; 883-893; <a href="https://doi.org/10.48550/arXiv.1406.4566">10.48550/arXiv.1406.4566</a></li> <li>Cvitkovic, Milan and Singh, Badal, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085810844">Open Vocabulary Learning on Source Code with a Graph-Structured Cache</a>; Proceedings of Machine Learning Research; Vol. 97; 1475-1485; <a href="https://doi.org/10.48550/arXiv.1810.08305">10.48550/arXiv.1810.08305</a></li> <li>Kwok, Roberta and Ranade, Gireeja, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20200302-111944472">Junior AI researchers are in demand by universities and industry</a>; Nature; Vol. 568; No. 7753; 581-583; <a href="https://doi.org/10.1038/d41586-019-01248-w">10.1038/d41586-019-01248-w</a></li> <li>Kossaifi, Jean and Panagakis, Yannis, el al. (2019) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190228-133230688">TensorLy: Tensor Learning in Python</a>; Journal of Machine Learning Research; Vol. 20; No. 26; 1-6; <a href="https://doi.org/10.48550/arXiv.1610.09555">10.48550/arXiv.1610.09555</a></li> <li>Tschannen, Michael and Khanna, Aran, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085739295">StrassenNets: Deep Learning with a Multiplication Budget</a>; Proceedings of Machine Learning Research; Vol. 80; 4985-4994; <a href="https://doi.org/10.48550/arXiv.1712.03942">10.48550/arXiv.1712.03942</a></li> <li>Furlanello, Tommaso and Lipton, Zachary C., el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085757099">Born Again Neural Networks</a>; Proceedings of Machine Learning Research; Vol. 80; 1607-1616; <a href="https://doi.org/10.48550/arXiv.1805.04770">10.48550/arXiv.1805.04770</a></li> <li>Bernstein, Jeremy and Wang, Yu-Xiang, el al. (2018) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190327-085742729">signSGD: Compressed Optimisation for Non-Convex Problems</a>; Proceedings of Machine Learning Research; Vol. 80; 560-569; <a href="https://doi.org/10.48550/arXiv.1802.04434">10.48550/arXiv.1802.04434</a></li> <li>Anandkumar, Anima and Deng, Yuan, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123333151">Homotopy Analysis for Tensor PCA</a>; Proceedings of Machine Learning Research; Vol. 65; 79-104; <a href="https://doi.org/10.48550/arXiv.1610.09322">10.48550/arXiv.1610.09322</a></li> <li>Agarwal, Alekh and Anandkumar, Animashree, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-111802806">A Clustering Approach to Learning Sparsely Used Overcomplete Dictionaries</a>; IEEE Transactions on Information Theory; Vol. 63; No. 1; 575-592; <a href="https://doi.org/10.1109/TIT.2016.2614684">10.1109/TIT.2016.2614684</a></li> <li>Anandkumar, Animashree and Ge, Rong, el al. (2017) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-110910164">Analyzing Tensor Power Method Dynamics in Overcomplete Regime</a>; Journal of Machine Learning Research; Vol. 18; No. 22; 1-40; <a href="https://doi.org/10.48550/arXiv.1411.1488">10.48550/arXiv.1411.1488</a></li> <li>Agarwal, Alekh and Anandkumar, Animashree, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-090108498">Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization</a>; SIAM Journal of Optimization; Vol. 26; No. 4; 2775-2799; <a href="https://doi.org/10.1137/140979861">10.1137/140979861</a></li> <li>Azizzadenesheli, Kamyar and Lazaric, Alessandro, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123326217">Open Problem: Approximate Planning of POMDPs in the class of Memoryless Policies</a>; Proceedings of Machine Learning Research; Vol. 49; 1639-1642; <a href="https://doi.org/10.48550/arXiv.1608.04996">10.48550/arXiv.1608.04996</a></li> <li>Azizzadenesheli, Kamyar and Lazaric, Alessandro, el al. (2016) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-123310700">Reinforcement Learning of POMDPs using Spectral Methods</a>; Proceedings of Machine Learning Research; Vol. 49; 193-256; <a href="https://doi.org/10.48550/arXiv.1602.07764">10.48550/arXiv.1602.07764</a></li> <li>Huang, Furong and Niranjan, U. N., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-111140656">Online Tensor Methods for Learning Latent Variable Models</a>; Journal of Machine Learning Research; Vol. 16; 2797-2835; <a href="https://doi.org/10.48550/arXiv.1309.0787">10.48550/arXiv.1309.0787</a></li> <li>Anandkumar, Animashree and Hsu, Daniel, el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-144026647">When Are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity</a>; Journal of Machine Learning Research; Vol. 16; 2643-2694; <a href="https://doi.org/10.48550/arXiv.1308.2853">10.48550/arXiv.1308.2853</a></li> <li>Anandkumar, Animashree and Foster, Dean P., el al. (2015) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-142816744">A Spectral Algorithm for Latent Dirichlet Allocation</a>; Algorithmica; Vol. 72; No. 1; 193-214; <a href="https://doi.org/10.1007/s00453-014-9909-1">10.1007/s00453-014-9909-1</a></li> <li>Sedghi, Hanie and Janzamin, Majid, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20190401-162921773">Provable Tensor Methods for Learning Mixtures of Generalized Linear Models</a>; Proceedings of Machine Learning Research; Vol. 51; 1223-1231; <a href="https://doi.org/10.48550/arXiv.1412.3046">10.48550/arXiv.1412.3046</a></li> <li>Anandkumar, Animashree and Ge, Rong, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-134735763">Tensor Decompositions for Learning Latent Variable Models</a>; Journal of Machine Learning Research; Vol. 15; 2773-2832; <a href="https://doi.org/10.48550/arXiv.1210.7559">10.48550/arXiv.1210.7559</a></li> <li>Anandkumar, Animashree and Ge, Rong, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-093022023">A Tensor Approach to Learning Mixed Membership Community Models</a>; Journal of Machine Learning Research; Vol. 15; 2239-2312; <a href="https://doi.org/10.48550/arXiv.1302.2684">10.48550/arXiv.1302.2684</a></li> <li>Sattari, Pegah and Kurant, Maciej, el al. (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-101553300">Active Learning of Multiple Source Multiple Destination Topologies</a>; IEEE Transactions on Signal Processing; Vol. 62; No. 8; 1926-1937; <a href="https://doi.org/10.1109/TSP.2014.2304431">10.1109/TSP.2014.2304431</a></li> <li>Janzamin, Majid and Anandkumar, Animashree (2014) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-142820777">High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models</a>; Journal of Machine Learning Research; Vol. 15; 1549-1591; <a href="https://doi.org/10.48550/arXiv.1211.0919">10.48550/arXiv.1211.0919</a></li> <li>Anandkumar, Animashree and He, Ting, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-142253537">Seeing through black boxes: Tracking transactions through queues under monitoring resource constraints</a>; Performance Evaluation; Vol. 70; No. 12; 1090-1110; <a href="https://doi.org/10.1016/j.peva.2013.08.003">10.1016/j.peva.2013.08.003</a></li> <li>Anandkumar, Animashree and Hassidim, Avinatan, el al. (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-132342501">Topology discovery of sparse random graphs with few participants</a>; Random Structures & Algorithms; Vol. 43; No. 1; 16-48; <a href="https://doi.org/10.1002/rsa.20420">10.1002/rsa.20420</a></li> <li>Anandkumar, Animashree and Valluvan, Ragupathyraj (2013) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-104250746">Learning loopy graphical models with latent variables: Efficient methods and guarantees</a>; Annals of Statistics; Vol. 41; No. 2; 401-435; <a href="https://doi.org/10.48550/arXiv.1203.3887">10.48550/arXiv.1203.3887</a></li> <li>Anandkumar, Animashree and Tan, Vincent Y. F., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-091743601">High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion</a>; Journal of Machine Learning Research; Vol. 13; 2293-2337; <a href="https://doi.org/10.48550/arXiv.1107.1270">10.48550/arXiv.1107.1270</a></li> <li>Liu, Ying and Chandrasekaran, Venkat, el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20120820-094221711">Feedback Message Passing for Inference in Gaussian Graphical Models</a>; IEEE Transactions on Signal Processing; Vol. 60; No. 8; 4135-4150; <a href="https://doi.org/10.1109/TSP.2012.2195656">10.1109/TSP.2012.2195656</a></li> <li>Anandkumar, Animashree and Tan, Vincent Y. F., el al. (2012) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-101515951">High-dimensional structure estimation in Ising models: Local separation criterion</a>; Annals of Statistics; Vol. 40; No. 3; 1346-1375; <a href="https://doi.org/10.48550/arXiv.1107.1736">10.48550/arXiv.1107.1736</a></li> <li>Anandkumar, Amod J. G. and Anandkumar, Animashree, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170925-094601829">Robust Rate Maximization Game Under Bounded Channel Uncertainty</a>; IEEE Transactions on Vehicular Technology; Vol. 60; No. 9; 4471-4486; <a href="https://doi.org/10.1109/TVT.2011.2171011">10.1109/TVT.2011.2171011</a></li> <li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-144736867">Learning High-Dimensional Markov Forest Distributions: Analysis of Error Rates</a>; Journal of Machine Learning Research; Vol. 12; 1617-1653; <a href="https://doi.org/10.48550/arXiv.1005.0766">10.48550/arXiv.1005.0766</a></li> <li>Choi, Myung Jin and Tan, Vincent Y. F., el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170927-100701408">Learning Latent Tree Graphical Models</a>; Journal of Machine Learning Research; Vol. 12; 1771-1812; <a href="https://doi.org/10.48550/arXiv.1009.2722">10.48550/arXiv.1009.2722</a></li> <li>Anandkumar, Animashree and Michael, Nithin, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-133040888">Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret</a>; IEEE Journal on Selected Areas in Communications; Vol. 29; No. 4; 731-745; <a href="https://doi.org/10.1109/JSAC.2011.110406">10.1109/JSAC.2011.110406</a></li> <li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2011) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-092634649">A Large-Deviation Analysis of the Maximum-Likelihood Learning of Markov Tree Structures</a>; IEEE Transactions on Information Theory; Vol. 57; No. 3; 1714-1735; <a href="https://doi.org/10.1109/TIT.2011.2104513">10.1109/TIT.2011.2104513</a></li> <li>Tan, Vincent Y. F. and Anandkumar, Animashree, el al. (2010) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170922-082655078">Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures</a>; IEEE Transactions on Signal Processing; Vol. 58; No. 5; 2701-2714; <a href="https://doi.org/10.1109/TSP.2010.2042478">10.1109/TSP.2010.2042478</a></li> <li>Anandkumar, Animashree and Yukich, Joseph E., el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170921-155701400">Energy scaling laws for distributed inference in random fusion networks</a>; IEEE Journal on Selected Areas in Communications; Vol. 27; No. 7; 1203-1217; <a href="https://doi.org/10.1109/JSAC.2009.090916">10.1109/JSAC.2009.090916</a></li> <li>Anandkumar, Animashree and Tong, Lang, el al. (2009) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-162015185">Detection of Gauss-Markov Random Fields With Nearest-Neighbor Dependency</a>; IEEE Transactions on Information Theory; Vol. 55; No. 2; 816-827; <a href="https://doi.org/10.1109/TIT.2008.2009855">10.1109/TIT.2008.2009855</a></li> <li>Anandkumar, Animashree and Tong, Lang, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-160524319">Optimal Node Density for Detection in Energy-Constrained Random Networks</a>; IEEE Transactions on Signal Processing; Vol. 56; No. 10; 5232-5245; <a href="https://doi.org/10.1109/TSP.2008.928514">10.1109/TSP.2008.928514</a></li> <li>Anandkumar, Animashree and Tong, Lang, el al. (2008) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-155855969">Distributed Estimation Via Random Access</a>; IEEE Transactions on Information Theory; Vol. 54; No. 7; 3175-3181; <a href="https://doi.org/10.1109/TIT.2008.924652">10.1109/TIT.2008.924652</a></li> <li>Anandkumar, Animashree and Tong, Lang (2007) <a href="https://resolver.caltech.edu/CaltechAUTHORS:20170920-153723886">Type-Based Random Access for Distributed Detection Over Multiaccess Fading Channels</a>; IEEE Transactions on Signal Processing; Vol. 55; No. 10; 5032-5043; <a href="https://doi.org/10.1109/TSP.2007.896302">10.1109/TSP.2007.896302</a></li> </ul>